Integrated Water-Gas-Shift Pre-Combustion Carbon Capture Process (Contract No. DE-FE0023684)

Gökhan Alptekin, PhD
TDA Research, Inc.
Wheat Ridge, CO
galptekin@tda.com

2020 Gasification Systems Project Review

May 5, 2021
Project Objectives

• The project objective is to demonstrate techno-economic viability of an integrated WGS catalyst/CO₂ removal system for IGCC power plants and CTL plants
 • A high temperature PSA adsorbent is used for CO₂ removal above the dew point of the synthesis gas
 • A commercial low temperature catalyst is used for water-gas-shift
 • An effective heat management system is developed

• Project Tasks
 • Design a fully-equipped slipstream test unit with 10 SCFM raw synthesis gas treatment capacity
 • Design and fabricate CFD optimized reactors capable of managing the WGS exotherm while maintaining energy efficiency
 • Demonstrate critical design parameters including sorbent capacity, CO₂ removal efficiency, extent of WGS conversion as well as H₂ recovery using coal synthesis gas
 • Complete a high fidelity process design and economic analysis
Project Partners

Project Duration
- Start Date = October 1, 2014
- End Date = September 30, 2021

Budget
- Project Cost = $5,632,619
- DOE Share = $4,506,719
- TDA and its partners = $1,125,900
TDA’s Approach

• Conventional IGCC plants use multi-stage WGS with inter-stage cooling
 • WGS is an equilibrium-limited exothermic reaction
 • Water is supplied at concentrations well above required by the reaction stoichiometry to completely shift the CO to CO₂

3-stage WGS unit as described in the DOE/NETL-2007/1281

• In our process, the WGS catalyst is combined with a high temperature CO₂ adsorbent to achieve high CO conversion at low steam:carbon ratios
• Reduced water addition increases process efficiency
TDA’s Sorbent

- TDA’s uses a mesoporous carbon with surface functional groups that remove CO$_2$ via strong physical adsorption
 - CO$_2$-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO$_2$ is not bonded via a covalent bond, energy input for regeneration is low
- Heat of CO$_2$ adsorption is 4.9 kcal/mol for TDA sorbent
 - Net energy loss in sorbent regeneration is similar to Selexol; much higher IGCC efficiency can be achieved due to high temperature CO$_2$ capture
- Favorable material properties
 - Pore size is tuned to 10 to 100 Å
 - Mesopores eliminates diffusion limitations

US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland “Pre-combustion CO$_2$ Capture System Using a Regenerable Sorbent"
Operating Conditions

- CO₂ is recovered via combined pressure & concentration swing
 - CO₂ recovery at ~150 psia reduces energy need for CO₂ compression
 - Small steam purge ensures high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants
- The WGS catalyst was subjected to the same cycle

Source: Honeywell/UOP
Reducing the use of excess steam improves power cycle efficiency
 • Lower energy consumption to raise the steam

Process intensification could potentially reduce the number of hardware components and cost

Sorbent’s point of view:
• Less dilution with water increases CO$_2$ partial pressure and in turn improves sorbent’s working capacity
Application of the Technology to CTL
Sorbent Development Work

- 0.1 MW_e test in a world class IGCC plant to demonstrate full benefits of the technology
 - Field Test #1 at NCCC
 - Field Test #2 at Sinopec Yangtzi Petro-chemical Plant, Nanjing, Jiangsu Province, China
- Full operation scheme
 - 8 reactors and all accumulators
 - Utilize product/inert gas purges
 - H₂ recovery/CO₂ purity
90+% capture at steam:CO ratio= 1:1.1 with average 96.4% CO conversion

All objectives met (no coking etc.) but high reactor T was observed
Technology Status/R&D Needs

- Sorbent is developed under a separate DOE project (DE-FE0000469)
- WGS catalyst is commercially available mature technology
- Early-stage concept demonstration has already been completed (DE-FE0007966 and DE-FE0012048)
 - Integrated sorbent/catalyst operation
 - Pointed out the need to incorporate effective heat management
 - Implemented the heat management scheme in a 4-bed PSA system using coal derived synthesis gas at 1 kg/hr CO₂ removal
- Key R&D need is the design/development of a high fidelity prototype to fully demonstrate the concept using actual coal-derived synthesis gas
 - Reactor design to address the heat management needs
 - A 10 kg/hr CO₂ removal is being developed
 - Testing of the high fidelity system will be carried out at Praxair
• Heat generated during adsorption is removed during regeneration
 • Near isothermal operation through the cycle
Heat Wave WGS & CO₂ Capture

- Integrated WGS & CO₂ capture results in higher ΔT
- Not ideal for CO₂ capture (the WGS heat accumulates in the beds)
Conventional Heat Management Options

10 kg/hr CO₂ Removal Pilot Test System – 6” reactors

- Cooling Jacket
- Immersed Tube (1)
- Immersed Tubes (3)
Heat Integrated WGS & CO$_2$ Capture

- Advanced heat management concept based on direct water injection has proven to achieve much better temperature control
 - Also much better heating efficiency (i.e., kJ heat removed per kg water)
- Objective is to achieve a more uniform cooling without having hot or cold spots
- The temperature rise is optimal when the catalyst is distributed into two layers with water injections before each layer
Bench-Scale Evaluations

- 8L reactors were modified with water injectors
- Successful proof-of-concept demonstrations have been completed
- $\Delta T < 10^\circ$C was maintained over extended cycling (much lower than those in early field tests)
We completed 32,000 cycles showing stable performance for the WGS catalyst and CO₂ sorbent.

Test Conditions:
- Adsorb: 45-50% H₂, 30% CO₂, 7% H₂O, 4-6% CO, Balance N₂
- T: 200-215°C, P: 150-300 psig
- Regen: 25% H₂O, Balance N₂
- T: 200-215°C, P: 50-65 psig

Adsorption Pressure
300 psig

Adsorption Pressure
150 psig
• By evaluating continuous catalytic activity (alone) we showed that cycling between reducing and oxidizing conditions (i.e., steam exposure) had no adverse effect on the WGS catalyst.
Integrated WGS/CO$_2$ Capture System
Fabrication of the Prototype
Installation at Praxair

• Fabrication of the Prototype unit was completed in 2018 Q2 and installation at Praxair R&D Center (Tonawanda, NY) was completed in 2018 Q3

• First campaign is completed in Q2 2019
Control of Water Injection

- We demonstrated that precise amounts of water can be injected and their individual flow rates can be controlled within tolerances of less than 0.5 g/min between injectors.
Temperature Management via Water Injection

- We observed an increase in bed temperature by increasing the inlet steam:CO from 1 to 2
- Bed temperature was maintained at ~40°C lower when injecting the same amount water directly into the beds
Impact of Water Injection

- An overall CO conversion >98% was achieved
- Cycle times were not yet optimized in this run therefore carbon capture was only at 60% (incoming CO$_2$ + CO$_2$ from shifted CO$_2$)
- Optimization was planned for the test scheduled for the next campaign
Effect on Equilibrium Conversion

- By coupling the WGS with the CO$_2$ sorbent and water injection, we were able to operate the beds at 200°C but achieve the equilibrium CO conversion of a 40°C cooler bed.
Integration with E-Gas™ Gasifier

<table>
<thead>
<tr>
<th>Gasifier Type/Make</th>
<th>E-Gas</th>
<th>E-Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO₂ Capture Technology</td>
<td>Cold Gas Cleanup</td>
<td>Warm Gas Cleanup</td>
</tr>
<tr>
<td></td>
<td>Selexol™</td>
<td>TDA's CO₂ Sorbent</td>
</tr>
<tr>
<td>CO₂ Capture, %</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Gross Power Generated, kW</td>
<td>710,789</td>
<td>670,056</td>
</tr>
<tr>
<td>Gas Turbine Power</td>
<td>464,000</td>
<td>425,605</td>
</tr>
<tr>
<td>Steam Turbine Power</td>
<td>246,789</td>
<td>244,450</td>
</tr>
<tr>
<td>Syngas Expander Power</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Auxiliary Load, kW</td>
<td>194,473</td>
<td>124,138</td>
</tr>
<tr>
<td>Net Power, kW</td>
<td>516,316</td>
<td>545,917</td>
</tr>
<tr>
<td>Net Plant Efficiency, % HHV</td>
<td>31.0</td>
<td>34.1</td>
</tr>
<tr>
<td>Coal Feed Rate, kg/h</td>
<td>220,549</td>
<td>212,265</td>
</tr>
<tr>
<td>Raw Water Usage, GPM/MW</td>
<td>10.9</td>
<td>10.3</td>
</tr>
<tr>
<td>Total Plant Cost, $/kW</td>
<td>3,464</td>
<td>3,042</td>
</tr>
<tr>
<td>COE without CO₂ TS&M, $/MWh</td>
<td>136.8</td>
<td>120.5</td>
</tr>
<tr>
<td>COE with CO₂ TS&M, $/MWh</td>
<td>145.7</td>
<td>128.6</td>
</tr>
<tr>
<td>Cost of CO₂ Captured, $/tonne</td>
<td>53.2</td>
<td>37.4</td>
</tr>
</tbody>
</table>

- IGCC plant efficiency is estimated as 34.7% with TDA's WGS/CO₂ system
- Cost of CO₂ capture is estimated as less than $26/tonne (including TS&M less than $35.8/tonne)
Integrated WGS with CO₂ capture reduced the required selling price for Naphtha to $100 per bbl compared to $107 per bbl for a CTL plant with Rectisol.

Integrated WGS with CO₂ capture reduced the required selling price for Diesel to $143 per bbl compared to $153 per bbl for a CTL plant with Rectisol.
Acknowledgement

- NETL, Project Manager, Diane Revay Madden
- Chuck Shistla, GTI
- Sean Kelly, Juan Li, Praxair
- Frank Morton, NCCC
- Ashok Rao, UCI

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."