Integrated Water-Gas-Shift Pre-Combustion Carbon Capture Process (Contract No. DE-FE0023684)

Gökhan Alptekin, PhD TDA Research, Inc. Wheat Ridge, CO galptekin@tda.com

2020 Gasification Systems
Project Review

May 5, 2021

Project Objectives

- The project objective is to demonstrate techno-economic viability of an integrated WGS catalyst/CO₂ removal system for IGCC power plants and CTL plants
 - A high temperature PSA adsorbent is used for CO₂ removal above the dew point of the synthesis gas
 - A commercial low temperature catalyst is used for water-gas-shift
 - An effective heat management system is developed

Project Tasks

- Design a fully-equipped slipstream test unit with 10 SCFM raw synthesis gas treatment capacity
- Design and fabricate CFD optimized reactors capable of managing the WGS exotherm while maintaining energy efficiency
- Demonstrate critical design parameters including sorbent capacity, CO₂ removal efficiency, extent of WGS conversion as well as H₂ recovery using coal synthesis gas
- Complete a high fidelity process design and economic analysis

Project Partners

Indigo Power FZC Innovative Solutions for the Power Industry

PRAXAIR

Project Duration

- Start Date = October 1, 2014
- End Date = September 30, 2021

Budget

- Project Cost = \$5,632,619
- DOE Share = \$4,506,719
- TDA and its partners = \$1,125,900

TDA's Approach

- Conventional IGCC plants use multi-stage WGS with inter-stage cooling
 - WGS is an equilibrium-limited exothermic reaction
- Water is supplied at concentrations well above required by the reaction stoichiometry to completely shift the CO to CO₂

3-stage WGS unit as described in the DOE/NETL-2007/1281

- In our process, the WGS catalyst is combined with a high temperature CO₂ adsorbent to achieve high CO conversion <u>at low steam:carbon ratios</u>
- Reduced water addition increases process efficiency

TDA's Sorbent

- TDA's uses a mesoporous carbon with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Net energy loss in sorbent regeneration is similar to Selexol; much higher IGCC efficiency can be achieved due to high temperature CO₂ capture
- Favorable material properties
 - Pore size is tuned to 10 to 100 A
 - Mesopores eliminates diffusion limitations

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354 US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland "Precombustion CO₂ Capture System Using a Regenerable Sorbent"

Operating Conditions

- CO₂ is recovered via combined pressure & concentration swing
 - CO₂ recovery at ~150 psia reduces energy need for CO₂ compression
 - Small steam purge ensures high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants
- The WGS catalyst was subjected to the same cycle

Syngas Inlet 240°C, 500 psia 40% CO₂ P_{CO2} = 200 psia

Regen. Exit 240°C, 150 psia 50% CO_2 /Steam $P_{CO2} = 75$ psia

Adsorption

Desorption

Syngas Exit 250°C, 492 psia < 1% CO₂ P_{co2} < 5 psia

Regen. Inlet 250°C, 158 psia 100% H_2O $P_{CO2} = 0$ psia

Source: Honeywell/UOP

Integrated WGS/CO₂ Capture System

- Reducing the use of excess steam improves power cycle efficiency
 - Lower energy consumption to raise the steam
- Process intensification could potentially reduce the number of hardware components and cost

Sorbent's point of view:

 Less dilution with water increases CO₂ partial pressure and in turn improves sorbent's working capacity

Application of the Technology to CTL

Sorbent Development Work

TDA 0.1 MW pre-combustion carbon capture unit installed at the National Carbon Capture Center

- 0.1 MW_e test in a world class IGCC plant to demonstrate full benefits of the technology
 - Field Test #1 at NCCC
 - Field Test #2 at Sinopec Yangtzi Petrochemical Plant, Nanjing, Jiangsu Province, China
- Full operation scheme
 - 8 reactors and all accumulators
 - Utilize product/inert gas purges
 - H₂ recovery/CO₂ purity

Yangtzi Petro-chemical Plant

NCCC Field Test – Early Work

- 90+% capture at steam:CO ratio= 1:1.1 with average 96.4% CO conversion
- All objectives met (no coking etc.) but high reactor T was observed

Technology Status/R&D Needs

- Sorbent is developed under a separate DOE project (DE-FE0000469)
- WGS catalyst is commercially available mature technology
- Early-stage concept demonstration has already been completed (DE-FE0007966 and DE-FE0012048)
 - Integrated sorbent/catalyst operation
 - Pointed out the need to incorporate effective heat management
 - Implemented the heat management scheme in a 4-bed PSA system using coal derived synthesis gas at 1 kg/hr CO₂ removal
- Key R&D need is the design/development of a high fidelity prototype to fully demonstrate the concept using actual coalderived synthesis gas
 - Reactor design to address the heat management needs
 - A 10 kg/hr CO₂ removal is being developed
 - Testing of the high fidelity system will be carried out at Praxair

T Profiles - During CO₂ Capture Only

- Heat generated during adsorption is removed during regeneration
 - Near isothermal operation through the cycle

Heat Wave WGS & CO₂ Capture

- Integrated WGS & CO₂ capture results in higher ΔT
- Not ideal for CO₂ capture (the WGS heat accumulates in the beds)

Conventional Heat Management Options

10 kg/hr CO₂ Removal Pilot Test System – 6" reactors

Heat Integrated WGS & CO₂ Capture

- Advanced heat management concept based on direct water injection has proven to achieve much better temperature control
 - Also much better heating efficiency (i.e., kJ heat removed per kg water)
- Objective is to achieve a more uniform cooling without having hot or cold spots
- The temperature rise is optimal when the catalyst is distributed into two layers with water injections before each layer

T Contours (°C) Single Injection Layer

T Contours (°C) Multiple Injection Layers

Bench-Scale Evaluations

- 8L reactors were modified with water injectors
- Successful proof-of-concept demonstrations have been completed
- \Delta T < 10°C was maintained over extended cycling (much lower than those in early field tests)

Life Tests – Sorbent Activity

 We completed 32,000 cycles showing stable performance for the WGS catalyst and CO₂ sorbent

Life Tests – Catalyst Activity

 By evaluating continuous catalytic activity (alone) we showed that cycling between reducing and oxidizing conditions (i.e., steam exposure) had no adverse effect on the WGS catalyst

Integrated WGS/CO₂ Capture System

Fabrication of the Prototype

Installation at Praxair

- Fabrication of the Prototype unit was completed in 2018 Q2 and installation at Praxair R&D Center (Tonawanda, NY) was completed in 2018 Q3
- First campaign is completed in Q2 2019

Control of Water Injection

 We demonstrated that precise amounts of water can be injected and their individual flow rates can be controlled within tolerances of less than 0.5 g/min between injectors

Temperature Management via Water Injection

- We observed an increase in bed temperature by increasing the inlet steam:CO from 1 to 2
- Bed temperature was maintained at ~40°C lower when injecting the same amount water directly into the beds

Impact of Water Injection

- An overall CO conversion >98% was achieved
- Cycle times were not yet optimized in this run therefore carbon capture was only at 60% (incoming CO₂ + CO₂ from shifted CO₂)
- Optimization was planned for the test scheduled for the next campaign

Effect on Equilibrium Conversion

 By coupling the WGS with the CO₂ sorbent and water injection, we were able to operate the beds at 200°C but achieve the equilibrium CO conversion of a 40°C cooler bed

Integration with E-GasTM Gasifier

Gasifier Type/Make	E-Gas		
Case	1	2	2* (WGS/CO ₂)
	Cold Gas Cleanup	Warm Gas Cleanup	Warm Gas Cleanup
CO ₂ Capture Technology	Selexol™	TDA's CO ₂ Sorbent	TDA's CO ₂ Sorbent
CO ₂ Capture, %	90	90	90
Gross Power Generated, kW	710,789	670,056	693,542
Gas Turbine Power	464,000	425,605	427,980
Steam Turbine Power	246,789	244,450	265,562
Syngas Expander Power	-	-	-
Auxiliary Load, kW	194,473	124,138	138,741
Net Power, kW	516,316	545,917	554,801
Net Plant Efficiency, % HHV	31.0	34.1	34.7
Coal Feed Rate, kg/h	220,549	212,265	212,265
Raw Water Usage, GPM/MW	10.9	10.3	10.0
Total Plant Cost, \$/kW	3,464	3,042	2,990
COE without CO ₂ TS&M, \$/MWh	136.8	120.5	118.8
COE with CO ₂ TS&M, \$/MWh	145.7	128.6	126.7
Cost of CO ₂ Captured, \$/tonne	53.2	37.4	35.8

- IGCC plant efficiency is estimated as 34.7% with TDA's WGS/CO₂ system
- Cost of CO₂ capture is estimated as less than \$26/tonne (including TS&M less than \$35.8/tonne)

Process Economic Analysis - CTL

Gasifier	Shell			
Coal	Bituminous			
Case	9	10A		
		Warm Gas		
	Cold Gas	Cleanup		
	Cleanup	TDA's CO ₂		
CO ₂ Capture Technology	Rectisol [™]	Sorbent		
CO ₂ Capture, %	90	90		
Gross Power Generated, kW	462,568	458,830		
Gas Turbine Power	130,283	130,519		
Steam Turbine Power	332,285	328,311		
Syngas Expander Power	-	-		
Auxiliary Load, kW	397,803	365,956		
Net Power, kW	64,764	92,875		
Net Plant Efficiency, % HHV	1.08	1.55		
Naphtha Production rate, ST/D	1,803	1,722		
Diesel Production rate, ST/D	4,789	4,933		
Coal Feed Rate, kg/h	793,864	793,864		
Raw Water Usage, GPM	14,032.6	12,394.0		
Total Plant Cost, \$/kg/D	949.87	864.94		
NAPHTHA				
1st year Required Selling Price (RSP)				
w/o CO2 TS&M, \$/bbl	107.0	100.0		
DIESEL				
1st year Required Selling Price (RSP)				
w/o CO2 TS&M, \$/bbl	153.0	143.0		

- Integrated WGS with CO₂
 capture reduced the required selling price for Naphtha to \$100 per bbl compared to \$107 per bbl for a CTL plant with Rectisol
- Integrated WGS with CO₂
 capture reduced the required
 selling price for Diesel to \$143
 per bbl compared to \$153 per
 bbl for a CTL plant with
 Rectisol

Acknowledgement

- NETL, Project Manager, Diane Revay Madden
- Chuck Shistla, GTI
- Sean Kelly, Juan Li, Praxair
- Frank Morton, NCCC
- Ashok Rao, UCI

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."