Low Regeneration Temperature Sorbent for Direct Air Capture of CO₂

DE-FE0031965

PI: Dr. S. James Zhou Susteon Inc.

U.S. Department of Energy

National Energy Technology Laboratory

Direct Air Capture Kickoff Meeting

February 24-25, 2021

Program Overview

- a. Funding: \$999,687 (DOE and Cost Share)
- b. Overall Project Performance Dates: 10/2020 03/2022
- c. Project Participants:
 - a. Susteon Inc. (Prime)
 - b. University of Wyoming (Professor Maohong Fan)
 - c. SoCalGas
- d. Overall Project Objectives: Development of catalyzed solid sorbents with fast kinetics and low regeneration temperature for direct air capture of CO₂. The catalyst will reduce CAPEX and reduce energy consumption for sorbent regeneration resulting in lower cost of DAC.

Technology Background

- a. Catalyst has been used to improve CO₂ sorption and desorption rates by several orders of magnitudes amine solvent/sorbent based CO₂ capture applications.
- b. Only ppm quantities of the catalyst need to be added to amine-based adsorbents. This has a potential to reduce the regeneration temperature to 80°C, thus lowering the overall cost of CO₂ capture.
 - a. Lab-scale data on proprietary catalyst in MEA solution confirmed 30% increase in desorption rate and reduction in regeneration temperature
 - b. TEA: Significant reduction in overall CO₂ capture cost

Metric	State-of- Art	Goal
CO ₂ Adsorption Kinetics (gmol/min/kg)	1.0	2.0
Temperature of Regeneration (°C)	100-120	80-90
Energy of Regeneration (%)	100%	80%

Technical Approach/Project Scope

a. Planned Experimental and Process Modeling Work

- Synthesis, characterization and testing of catalysts and sorbents
- Measure rates of adsorption and desorption
- Determine heat and mass transfer
- Develop process model, process design with TEA

b. Project Schedule

- 1. Initial Technology Maturation Plan (TMP) developed
- 2. Catalyst and sorbent synthesis in progress

c. Project success criteria

- 1. Development of a catalyst that can be added to amine doped DAC sorbents to increase adsorption and desorption kinetics
- 2. An increase of at least 50% in adsorption and desorption rates as compared with un-catalyzed SOTA sorbents.

Team and Facilities

Susteon

Raghubir Gupta
President

S. James Zhou
Senior Director

Cory SandersonProcess Technologist

Jian Zheng Sr. Engineer

Progress and Current Status of Project

- Preliminary TMP completed
- DAC process cost parameters analyzed
- Catalyst synthesis recipe defined
- Catalyst quality control procedures established
- Catalyst synthesis setup assembling in progress
- Sorbent testing setup assembly in progress
- Sorbent supports and amines screening in progress

Opportunities for Collaboration

- a. In discussion with industrial partners about potential application of the catalyst in catalyzing CO₂ capture from natural gas, flue gas, and syngas streams.
- b. Explore testing of catalyst with amines under realistic operating conditions

