Cultivation of alkaliphilic microalgae for direct air capture and conversion of CO_2 to fuels and products DE-EE0008247

Sridhar Viamajala

The University of Toledo

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

U.S. Department of Energy

National Energy Technology Laboratory Direct Air Capture Kickoff Meeting

February 24-25, 2021

Program Overview

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- a. Funding: \$2,397,698 (Federal) + \$498,978 (cost share)
- b. Overall Project Performance Dates: Oct 2017 to June 2021
- c. Project Participants University of Toledo, Montana State University, and University of North Carolina at Chapel Hill
- d. Overall Project Objectives
 - Improve scale and productivity of novel alkaliphilic algal cultures cultivated in high-pH and highalkalinity media.
 - Establish seasonal productivities and the influence of scale-up
 - 2. Improve biomass composition
 - Media and cultivation conditions optimization
 - 3. Develop molecular biology toolkits
 - Gene editing and microbial ecology

Technology Background

Advantages of our technology

- Harsh pH conditions (pH>10) can mitigate detrimental microbial contamination and predator populations
- 2. Alkaline solutions scavenge CO₂ from the atmosphere at rapid rates. Thus, costs and geographical constraints associated with CO₂ supply can be mitigated (or eliminated)

Technology Background

Data that supports the premise of the project

High pH drastically enhances the rate of atmospheric CO₂ mass transfer

High media alkalinity improves CO₂ fixation and biomass growth rates due to higher availability of bicarbonate

Energy flow	Description	Notation	High HCO₃ ⁻ (65 mM)	Low HCO ₃ ⁻ (7 mM)
	Effective PS II quantum yield (photons utilized per incident photons)	Y(II)	0.37	0.23
owards carbon fixation	Photosynthetic efficiency (electrons per photon)	α	0.16	0.10
	Maximum electron transfer rate (μmole/m²/s)	ETR _{max}	20	15
Dissination	Total regulated + unregulated dissipation (photons dissipated per incident photon)	rregulated dissipation d per incident photon) Y(NPQ) + Y(NO) 0.65 0.78	0.78	
Dissipation	Maximum quantum yield	F _v /F _m	0.7	0.7

Technical Approach/Project Scope

Experimental design and work plan

Key milestones

- <u>Go/no-go</u>: Demonstrate the potential for production of >1200 GGE/acre/year. (Q7)
- Isolate one or more isogenic geneedited mutants and test for novel phenotypes. (*Q11*)
- Demonstrate a biofuel intermediate productivity >1500 GGE/acre/year. (Q12)
- Correlate microbial community structure to SLA-04 culture productivity. (*Q12*)

When successful, the project will

- De-couple microalgae biofuels production from CO₂ sources and significantly expand possible geographical locations for cultivation
- Decrease the cost of microalgae cultivation
- Develop toolkits for broad use by the microalgae community

Team and Facilities

Sridhar Viamajala Cultivation and scale-up

Robin Gerlach C and nutrient management

Matthew Fields Microbial ecology

Blake Wiedenheft Ross Carlson Gene editing

Metabolic flux modeling

Brent Peyton Cultivation and scale-up

Greg Characklis Economics and LCA

- Raceway ponds (20 L to 1200 L)
- Photobioreactors 0.5 L climate simulation e-PBRs (12) and 500 L tubular reactor
- Continuous flow centrifuge
- Conversion reactors fluidized bed, fixed bed, batch
- State-of-the-art equipment/facilities for molecular biology and chemical analyses

Progress and Current Status of Project

- Average annual productivity of strain SLA-04 meets BETO's FY20 targets without flue gas or concentrated CO₂ addition
- Alkaliphilic strain exhibits high productivities in all seasons
- Significant productivity improvements obtained by adjusting micronutrient compositions
- Robust culture no crashes observed in over 2 years of outdoor cultivation studies

Season	Cultivation area of raceway pond (m ²)	Average ash- free dry weight productivity (g/m ² /d)
Fall	0.9 and 4.2	14.4
Winter	0.18	7.1
Spring	0.18	13.6
Summer	0.18	31.1

Avg. annual AFDW productivity = 16.5 g/m²/d

Opportunities for Collaboration

- Molecular toolkits
 - Fully annotated genome
 - Have > 19 phylogenetically characterized, bacterial isolates from SLA-04 cultures.
 - Developing genome editing methods for SLA-04
- Scale up and product development
 - Partnership with Ford and Sonoco for developing polymers and foams

