Electrochemically-Driven Carbon Dioxide Separation DE-FE0031955

Brian P. Setzler University of Delaware

U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Program Overview

Funding: \$800,000 federal + \$200,000 cost share

Period of Performance: 10/1/2020 – 3/31/2022

Participants: University of Delaware

Project Objectives:

- Develop electrochemically-driven CO_2 separator with 0.4 mol/m²-hr air capture at <235 kJ/mol_{CO2} (1.5 MWh/t)
- Characterize poly(aryl piperidinium) (PAP) properties to support future development

Technology Background

Principles of operation

- 1. Generate OH⁻
- 2. Scrub CO_2 as CO_3^{2-}
- 3. Transport CO_3^{2-}
- 4. Consume OH⁻
- 5. Release CO_2

Technical advantages

- Continuous separation
- Strong binding by OH⁻
- Electrically driven
- Ambient temperature

Technical Approach/Project Scope

- 1. Project management and planning
- 2. Membrane fabrication Make flow-through PAP porous absorbers
- **3. Polymer/membrane characterization** Characterize dense and porous PAP polymer properties necessary to predict EDCS performance
- 4. Membrane electrode assembly testing Integrate absorber, membranes, and electrodes in small single cells (25 cm²) and test EDCS performance
- 5. **Process development** High-level process design and analysis

Mile- stone	Sub- task	Milestone Description	Planned Completion
4	3.1	Membrane anion transport: Establish operating window where conductivity is ≥ 5 mS/cm.	3/31/2021
5	3.2	Membrane CO₂ capture and release: Establish operating window where first-order rate constant is $\geq 1000 \text{ s}^{-1}$ and where thick-film mass transfer coefficient is $\geq 1 \text{ mm/s}$.	9/30/2021
6	4.3	Initial cell testing and performance: Demonstrate basic level of performance: ≤ 320 kJ/mol (2 MWh/t _{CO2}), 0.1 mol/m ² -hr CO ₂ production (25 cm ²)	9/30/2021
7	4.3	Final cell performance: Characterize wide range of operating parameters. Final targets: $\leq 235 \text{ kJ/mol} (1.5 \text{ MWh/t}_{CO2}), 0.4 \text{ mol/m}^2\text{-hr CO}_2 \text{ production} (25 \text{ cm}^2)$	3/31/2022
8	5.1	Process flowsheet: Complete flowsheet showing high-level process design and calculate mass and energy flows	3/31/2022

Success criteria:- Characterize PAP properties to enable modeling and analysis- Demonstrate technical feasibility at moderate performance level

4

Team and Facilities

Yushan Yan (PI)

Thank you to our many colleagues whose foundational work made this project possible:

- Junhua Wang
- Yun Zhao
- Teng Wang
- Stevi Matz
- Lin Shi
- David Yan
- Rohan Razdan
- Catherine Weiss
- Santiago Rojas-Carbonell
- Junwu Xiao

Brian Setzler (co-PI)

James Buchen

Membrane and cell test stations

Progress and Current Status of Project

Equipment constructed / adapted

• Polymer conductivity apparatus controlling temperature, humidity, and CO₂ concentration

Accomplishments

- Fabricated porous absorbers
- Ni(OH)₂ electrodes with polymer electrolyte

Performance achieved

- Electrodes (affect cell voltage and reversal losses): 0.32 V full cycle overpotential, 100 mAh/g
- Cell: 0.05 mol/m²-hr at 100 kJ/mol (0.6 MWh/t)
- Target: 0.40 mol/m²-hr at 235 kJ/mol (1.5 MWh/t)

• 90% RH

Opportunities for Collaboration

- Standardization of methods to characterize kinetics and thermodynamics of CO_2 in anion exchange polymers
- Fabrication of porous polymer films
 - Structural properties are critical to device performance
 - Project will cover only a small fraction of the possible fabrication methods
- Development of CO₂ hydration catalysts
 - Accelerate CO₂ capture
 - Lower energy consumption (smaller pH swing)
- Technoeconomic analysis and manufacturing cost estimates