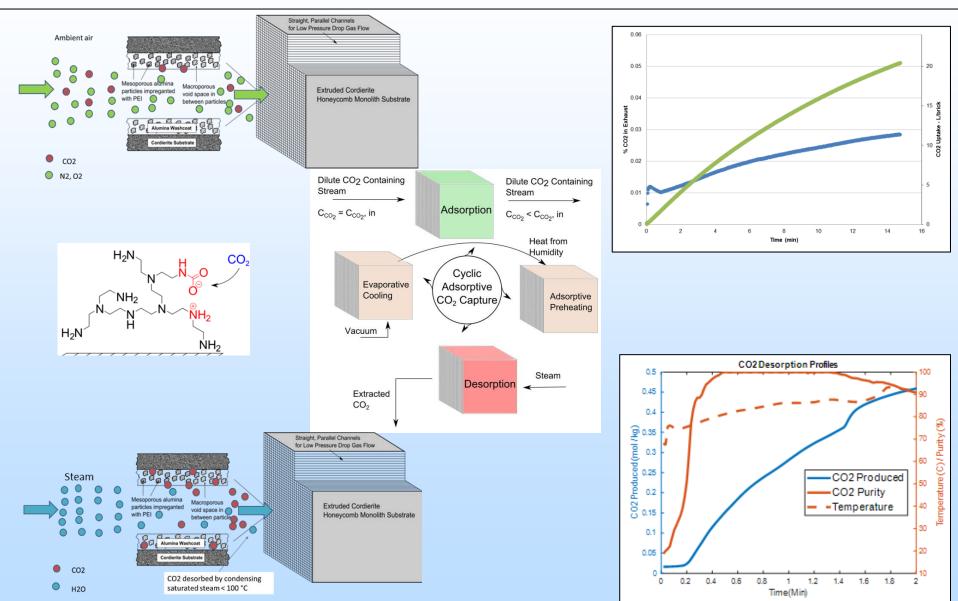
Demonstration of a Continuous Motion Direct Air Capture System NETL DE-FE0031957

Eric W. Ping Global Thermostat Operations

U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Program Overview


Federal: \$2,499,996 Cost Share: \$850,000 Total: \$3,349,996 Budget Period 1: 1/1/2021 – 12/31/2021 Budget Period 2: 1/1/2022 – 12/31/2022 Budget Period 3: 1/1/2023 – 6/30/2023

Project Participants:

Global Thermostat
Georgia Institute of Technology
National Renewable Energy Laboratory
VADA
Zero Carbon Partners

Primary Objectives: Design and construction of a field-test unit demonstrating a continuous-motion direct air capture process, reducing complexity, CAPEX, & OPEX while increasing reliability

Global Thermostat DAC Platform

Technical Approach & Project Scope

- Benefits of applying multibed adsorption paradigm via continuous movement of active media through a regeneration zone
 - 1. Significant reduction in mechanical complexity, force requirement, while maintaining high capital utilization and rapid cycling
 - 2. Steady-state utility & energy flows: maximum instantaneous demand = average demand
 - 3. Enables direct heat integration capability no intermediate storage necessary
- Requires careful consideration of movement, sealing methodologies to maximize adsorbent lifetime

Project Scope & High-Level Objectives

- BP1 (ends 4Q2021):
 - Prototype primary mechanical features and plant concepts of a continuous DAC (cDAC) process
 - Optimize primary process steps of a cDAC process to minimize cost & carbon footprint while protecting sorbent lifetime
 - Complete full field-test engineering design package
- BP2 (ends 4Q2022):
 - Construct & commission cDAC field-test unit
 - Develop TEA, LCA, and sensitivity analyses for climate-relevant cDAC deployment
- BP3 (ends 2Q2023):
 - Continuous operation of cDAC field-test unit & TEA/LCA revision from operating optimization

Project Team

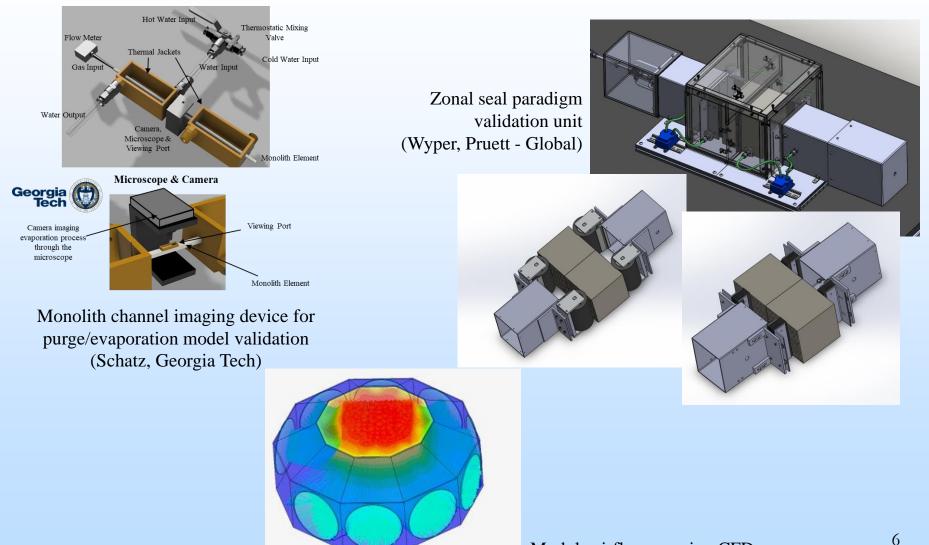
Transforming ENERGY

<u>Global Thermostat</u> Eric Ping – Project Coordinator Ron Chance Miles Sakwa-Novak – Co-PI Yanhui Yuan Zach Foltz Jed Pruett Sarah Wyper

Zero Carbon Partners David Elenowitz <u>VADA</u> Bud Klepper

Global Thermostat

Georgia Institute of Technology


Matthew Realff (PI, ChBE) Roman Grigoriev (Phys.) Michael Schatz (Phys.) Ari Glezer (MechE)

National Renewable Energy LaboratoryEric Tan (PI)Ryan Davis5Rob Brasington

Initial Project Work

0 24e3 12e0 72e3 61 13tbe1

Module airflow, scoping CFD (Wyper, Bouckenooghe - Global)

Opportunities for Collaboration

1. Fundamentals & Materials

• Materials research lab dedicated to structureproperty relationships of CO2 sorbents, transport and kinetic fundamentals, and sorbent lifetime assessment

2. Applied Materials Testing

 Global DAC test units for measuring cyclic CO2 capacity, closing mass & energy balances, under real ambient conditions with full range of adsorption and desorption control at multiple scales

3. Downstream/Upstream Integration with DAC for Improved TEA/LCA

- <100 °C heat energy enables opportunities for heat integration with downstream CO2 utilization (compression, bio/synthetic fuel production, etc.), or upstream energy generation
- Intrinsic sorbent robustness enables mass integration opportunities upstream (e.g. flue gas) or downstream (e.g. algae headspace recycle – DE-EE0008520)

