Understanding Degradation Mechanisms of Aminopolymers Used in Direct Air Capture

LAB 20-2303, SCW1726

PI: Simon H. Pang
Lawrence Livermore National Laboratory

U.S. Department of Energy
National Energy Technology Laboratory
Direct Air Capture Kickoff Meeting
February 24-25, 2021

This work was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-819777
Program Overview

- **Overall Project Objective**
 - Identify fundamental mechanisms and elucidate key chemical and structural parameters that impact degradation of aminopolymer-based DAC adsorbent materials

- **Timeline and Budget**
 - Project start date: 10/01/20
 - Project end date: 09/30/23
 - DOE-BES funding: $4.5M
Technology Background

Oxidative degradation of PEI causes **irreversible CO₂ capacity loss**: there is a **critical gap in the fundamental science** about the degradation mechanism and strategies that improve stability are not well understood.

Impact: Determining key degradation mechanisms can promote **novel, rationally motivated improvement strategies** for polymer modification, and better predictions of adsorbent lifetime will **reduce uncertainty** about direct air capture cost and economic viability.
Our approach uses a highly integrated combination of spectroscopic characterization, kinetic analysis, and advanced quantum simulations to generate fundamental knowledge about the mechanisms and kinetics of aminopolymer-based DAC adsorbent degradation.

A fully successful project will (i) determine key reaction mechanisms for oxidative degradation and (ii) develop models that allow better prediction of short- and long-term degradation behavior.
Progress and Current Status of Project

Model material studies

- Multi-analytical spectroscopic approach (NMR, FTIR, mass spectrometry) to investigate oxidation product distribution and formation kinetics
- Developing methods to sample the reaction space of O_2 interaction with model compounds; compute reaction free energies, activation barriers, and NMR spectra

Polymer mobility in model supports

- Fluorescence measurements of PEI under pore confinement indicate dramatic change in mobility (right)
- Examining polymer-support interactions with SSNMR to identify chemical environments for degraded materials
Opportunities for Collaboration

- Integration of project components
 - Synthesis and characterization with advanced quantum simulation and multiscale modeling
 - Characterization methods across team members coupled to simulation of spectroscopic fingerprints
 - Kinetic analysis connecting short-term accelerated behavior with long-term consequences

- Collaboration with industry provides context and model validation
 - Global Thermostat a leading practitioner of amine-based DAC
 - Project will develop models for predicting adsorbent lifetime, to be validated against quasi-accelerated aging experiments

- Looking forward...
 - Development and scale-up of next generation adsorbent materials and other degradation mitigation strategies