Hydrolytic Softening of Ocean Water for Carbon Dioxide Removal

ARPA-E (award under negotiation)

Christopher Martin, Ph.D. Energy & Environmental Research Center University of North Dakota

> U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Program Overview

- a. Funding
 - ARPA-E share: \$500,000
 - Cost share: 0%
- b. Overall Project Performance Dates
 - Start: tentatively March 2021
 - Duration: 18 months
- c. Project Participants
 - Energy & Environmental Research Center
- d. Overall Project Objectives
 - Address the high energy costs needed to drive ocean CO_2 removal.
 - Scale the process of lime softening to have a meaningful impact on global CO₂ reduction.

Technology Background

Hydrolytic Softening Concept

Key innovation is carbonate hydrolysis. Compared to calcination:

- Lower temperature: 900°C → 400°C
- 28% lower energy consumption

Advantages:

- Lower energy costs.
- CO₂ separation from seawater and temporary storage as a solid precipitate.
- Robust process. Softening is itself a pretreatment step applicable to raw seawater.

Challenges:

- Ca(OH)₂ regeneration within energy budget.
- Limiting co-precipitation of competing cations (Mg⁺⁺).
- Offshore heat source.

Technical Approach/Project Scope

Proposed Targets

Metric	Program Objectives	Proposed
Levelized Cost of CO ₂ Capture	<\$100 per ton CO ₂	\$62
Second-Law Efficiency	>10%	27%
Embodied Emissions	<5%	0.9%

Team and Facilities

EERC facilities in Grand Forks, ND.

Chris Martin, EERC Project PI

Mark Musich, EERC Task Lead

Current Status of Project

Project not yet started; planning for March 2021.

Opportunities for Collaboration

Key innovation is carbonate hydrolysis:

• Might also be applied for DAC solvent regeneration e.g., NaOH/KOH.

Seeking partners with offshore modeling and engineering experience for follow-on projects!

For more information contact: **Christopher Martin, Ph.D.** Principal Engineer Advanced Thermal Systems cmartin@undeerc.org 701.777.5083 (office)