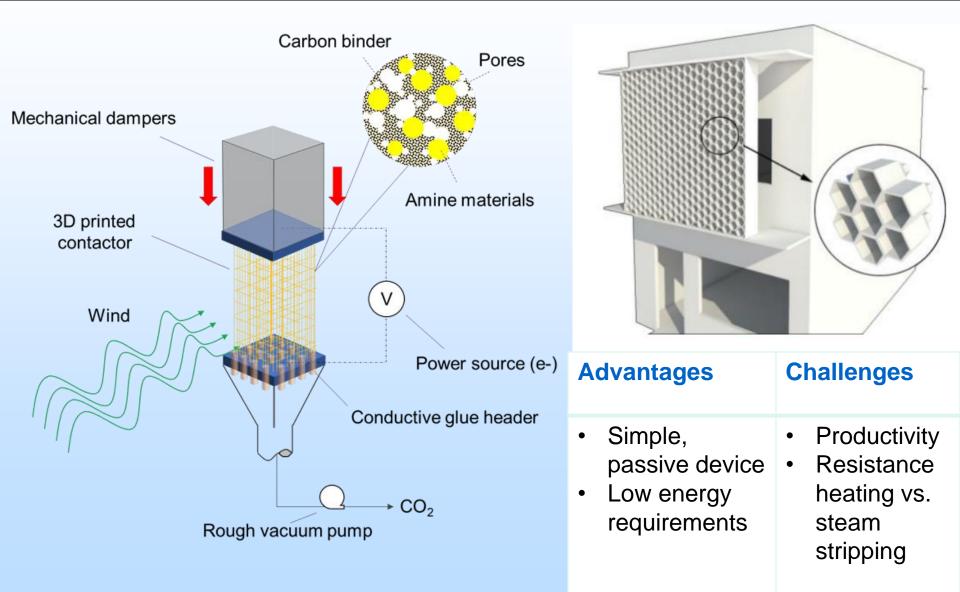
Wind-driven direct air capture using 3D printed, amine-loaded adsorption contactors

Project Number DE-AR0001414

Prof. Ryan P. Lively Georgia Institute of Technology

> U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021


Program Overview

	FY 2021		FY 2022		FY 2023			Tota	Total	
Funding	DOE Funds	Cost Share	DOE Funds	Cost Share	DC Fu)E Inds	Cost Share	DOE Funds	Cost Share	
Applicant	\$195,935		\$391,869		\$1	95,934		\$783,738		
Sub-recipient A, if proposed				\$0			\$0		\$0	
Total (\$)	\$195,935		\$391,869	\$0	\$1	95,934	\$0	\$783,738	\$0	
Total Cost Share %			0%		0%	0%		0%		
Overall Project Performance Dates: TBD – 18 months, Spring 2021 Start							ARPA-E		Project Participants	
Overall Project Objective:										
design a "passive" contactor designed to			Christopher Jones Tailored Polyamines			Ryan Lively Project Director 3D Printing		Matthew Realff DAC Models		
facilitate wind flow through the contactor without the							Thermostat Sakwa-Novak 2		2	

use of external fans

DAC Deployment

Technology Background

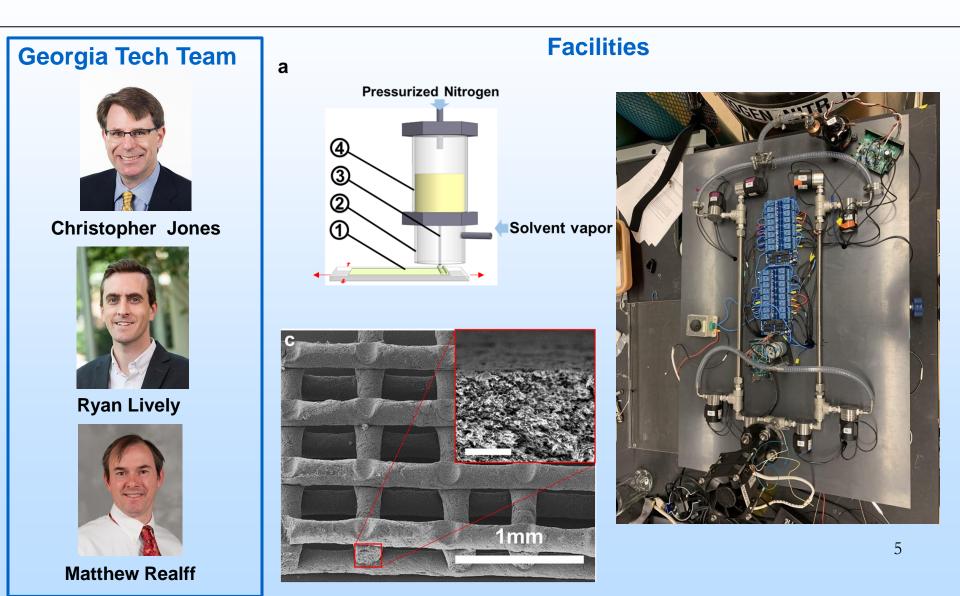
Technical Approach/Project Scope

Fiber Design

- a. Fiber length, diameter
- b. Carbon, sorbent loading
- c. Amine chemistry

Key Milestones

Milestone Title & Description	Planned Completion Date
Sorbent developed with sorption enthalpy of -65 kJ/mol and projected working capacity and capital cost at scale consistent with \$100/t CO2 removed	Quarter 3
Define optimal carbon material for resistive heating, as well as loading and maximum contactor height	Quarter 2
Contactor fabricated with wind speed ratio (ratio of wind speed external to system to speed of air in a channel) of 0.15 and geometric surface area > 5,000 m2/m3	Quarter 4
Demonstrate 95% CO2 purity in the outlet stream using synthetic air with 400 ppm CO2.	Quarter 7


Contactor Design

- a. Wind speed ratio
- b. Integration to power systems
- c. Productivity

Success Criteria

Provide 2 weeks of operating data using outdoor air. Target productivity is 1.5 kg CO₂ per kg sorbent per day. Target purity is >95 mol% CO₂ using real air. Target energy consumption is < 4 GJ_e/tonne CO₂. Target < 3% swing capacity loss over 2 week cycling period (to be assessed by high precision sorption isotherm measurement). These targets provide a clear pathway to \$100/tonne.

Team and Facilities

Opportunities for Collaboration

Synergistic effects of collaboration:

- This process requires integration of materials science, fluid dynamics, process systems – collaborations in all of these areas are welcome
- Better sorbent and contactor design could result from collaborating with teams with similar research goals

Areas of complementary work that others may contribute to this technology:

- Computational fluid dynamics
- Wind mapping and planning
- 3D printing scale-out/up
- LCA analysis could help better understand the global impacts of this technology