MIL-101(Cr)-Amine Sorbents Evaluation Under Realistic Direct Air Capture Conditions

Project Number (See Federal Project Manager for help)

Prof. Ryan P. Lively Georgia Institute of Technology

> U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Program Overview

	FY 2020		FY 2021		FY 2022		Total	
Funding	DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share
Applicant			\$548,435		\$206,731		\$755,166	
Sub-recipient A, if proposed				\$138,000		\$53,482		\$191,482
Total (\$)			\$548,435	\$138,000	\$206,731	\$53,482	\$755,166	\$191,482
Total Cost Share %			20.10%		20.55%		20.23%	

Technology Background

Proposed Technological Approach:

Advantages	Challenges
 High BET surface area Tunable pore characteristics High pore volume High density of open metal sites Stable over a wide range of conditions High efficiency at CO₂ concentration of 400 ppm Greatly benefited from functionalization with amines 	Polymeric amines become rigid at sub-ambient temperatures, leading to high diffusional resistances and slow kinetics

Hu, Y.; Verdegaal, W. M.; Yu, S. H.; Jiang, H. L., Alkylamine-Tethered Stable Metal–Organic Framework for CO₂ Capture from Flue Gas. ChemSusChem **2014**. 7 (3), 734-737.

Technical Approach/Project Scope

Task/ Subtask	Milestone Title & Description	Planned Completion Date	Success Criteria
3.2/4.2	Development of MIL-101(Cr)-based fibers and monolith sorbents. MIL- 101(Cr) sorbent macrostructures, with at least two different compositions, successfully fabricated and structurally characterized.	Month 9	Successful synthesis of MIL-101(Cr)-amine fiber and monolith sorbents.
5/8	Evaluation of performance and stability of powder MIL-101(Cr)-based sorbents at sub-ambient conditions. CO_2 capacities will be measured for at least three sorbent powder types. Cyclic stability and rate of oxidative degradation will be measured for at least 1 sorbent at 3 different conditions.		1-2 MIL-101(Cr)-based powder sorbents identified as promising sorbents at sub-ambient conditions: good compromise between CO_2 capacity, kinetics and stability (towards multiple cycles and oxygen).
9	Translation of most promising powder MIL-101(Cr)-based sorbents to fiber and monolith forms. Developed macrostructures should have CO_2 capacity of at least 75% of the powder sorbent capacity.		Performance of fiber or monolith is at least 75% of the powder performance.
10	Employ models of adsorption and desorption behavior to estimate DAC system performance metrics; report swing capacity and energy consumption per ton CO_2 .	Month 18	Adsorption and desorption models represent experimental data and estimated DAC system metrics allow assessment of suitability for next stage of process development.

Team and Facilities

Georgia Tech Sub-ambient Laboratory

Volumetric system

Thermogravimetric system

Custom-built fixed bed

Progress and Current Status of Project

Brief Description of the Equipment Used/Built in the Project

Equipment	Experimental conditions	Information acquired
Thermogravimetric system	-20 – 25 °C, dry gas feed	CO ₂ equilibrium adsorption and desorption capacities and kinetic profiles
Volumetric system	-20 – 25 °C, dry gas feed	CO ₂ adsorption isotherms
Fixed bed	-20 – 25 °C, humid gas feed with RH between 0 to 80%	Breakthrough capacity, adsorption and desorption kinetic profiles

Significant Accomplishments/Performance Achieved to Date

- Setting up the sub-ambient laboratory
- Increased CO₂ uptake in presence of amines results consistent with literature
- Greater CO₂ uptake in presence of a smaller amine (TEPA) as compared to PEI at sub-ambient conditions
- First step towards sorbent optimization based on DAC location: low-molecular weight sorbents maybe more effective at sub-ambient temperatures

Material	CO ₂ uptake at 400 ppm CO ₂ and -20 C (mmol/g)	CO ₂ uptake at 400 ppm CO ₂ and 20 C (mmol/g)
MIL-101(Cr)	0.002	<0.001
50% TEPA-MIL-101(Cr)	0.38	1.37

Opportunities for Collaboration

Synergistic effects of collaboration:

- CO₂ utilization technologies can provide more incentives for CO₂ capture
- Better sorbent and contactor design could result from collaborating with teams with similar research goals

Areas of complementary work that others may contribute to this technology:

- Develop more economical ways to synthesize MIL-101(Cr) and sorbent amines at larger scales
- Geological and geographical studies of potential locations for deployment to lower the cost and reduce uncertainties of the installation of plants
- Improve the efficiency and economy of CO₂ utilization or geological sequestration
- LCA analysis could help better understand the global impacts of this technology