Membrane Adsorbents Comprising Self-Assembled Inorganic Nanocages (SINCs) for Super-fast Direct Air Capture Enabled by Passive Cooling DE-FE0031960

Haiqing Lin University at Buffalo, The State University of New York

U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Program Overview

- a. Funding (DOE: \$800,000; Cost Share: \$206,330)
- b. Overall Project Performance Dates: 10/1/20 3/31/22
- c. Project Participants: University at Buffalo (UB) and Trimeric Corporation (Trimeric)
- d. Overall Project Objectives
 - Year 1: design and prepare membrane adsorbent based on CO₂philic polymers and SINCs, and design operation cycles with solar heating and radiative cooling for CO₂ capture from air.
 - M13-M18: construct and characterize a DAC prototype, demonstrate the 100-h continuous operation for DAC, and complete the TEA.

Technical Approach/Project Scope

Success criteria

- Lab-scale tests demonstrate CO₂ sorption of >2.0 mmol/g and excellent stability les for 100-h continuous operation.
- TEA shows that the process is economically competitive with ₃ the state-of-the-art sorbent technologies (\$600/ton CO₂)

Technology Background

- Each cycle
- 1. Sorption
- 2. Desorption by heating provided by solar cell
- 3. Radiative cooling

- Porous membrane adsorbents
- Nanocages
- electricity-free radiative cooling
- solar heating and desorption 4

Our Technology: Membrane Adsorbents

Flat-sheet membrane adsorbents with porosity 60 -95% comprising CO₂philic SINCs and polymers

 $CO_{2} + 2RNH_{2} \leftrightarrow RNH_{3}^{+} + RNHCOO^{-}$ $CO_{2} + 2R_{1}R_{2}NH \leftrightarrow R_{1}R_{2}NH_{2}^{+} + R_{1}R_{2}NCOO^{-}$ $CO_{2} + R_{1}R_{2}NH + H_{2}O \leftrightarrow R_{1}R_{2}NH_{2}^{+}HCO_{3}^{-}$ $CO_{2} + R_{1}R_{2}R_{3}N + H_{2}O \leftrightarrow R_{1}R_{2}R_{3}NH^{+}HCO_{3}^{-}$

Larger ligands expand the cavity to ~3.4 nm, providing room for alkyl amines

Radiative Cooling

Outdoor continuous measurement of proposed radiative cooling architecture.

Nature Sustainability 2, 718 (2019)

Team and Facilities

Haiqing Lin

Tim Cook

Qiaoqiang Gan

Novel membrane materials for CO_2 capture Self-assembly of discrete inorganic metallacycles & cages Thermal management

Andrew Sexton

TEA

Qualifications for CO₂ Capture, Sequestration and Processing

www.trimeric.com

Opportunities for Collaboration

- a. Collaboration in our project
 - New CO2 adsorbents: porous membranes; SINCs
 - Electricity-free thermal management and TSA
 - Materials and TEA
- b. Potential areas of complementary work
 - High performance adsorbents
 - System analysis: life cycle analysis
 - Design of rapid sorption/desorption systems