Electrochemical Direct Air Capture of CO₂ using Redox-Active Textiles

DE-AR0001413

David Kwabi (University of Michigan) Trisha L. Andrew (University of Massachusetts Amherst)

> U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Program Overview

- a. Funding \$431,915
- b. Overall Project Performance Dates
 February 2021 February 2023
- c. Project Participants
 University of Michigan
 University of Massachusetts Amherst
- d. Overall Project Objective

Develop high-surface area redox-active textile electrodes for electrochemical CO_2 capture from air

Technology Background

 CO_2 release: $HCO_3^- + H^+ \rightarrow CO_{2(g)} + H_2O$

Jin, S.; Wu, M.; Gordon, R. G.; Aziz, M. J.; Kwabi, D. G. pH swing cycle for CO2 capture electrochemically driven through protoncoupled electron transfer. *Energy & Environmental Science* **2020**

- Cheap electrodes and aqueous electrolytes enable scalable CO₂ capture
- System can be designed to limit O₂ transport to the electrode and oxidation of QH₂

Technical Approach/Project Scope

Work Plan

- 1. Synthesize PCET-active conductive textile electrodes using reactive vapor deposition
- 2. Integrate electrodes into CO₂-separating flow cells
- 3. Optimize energetic cost of CO₂ capture based on modeling

Goal: Benchtop demonstration of 100 stable CO_2 capture/release cycles from ambient air to > 5% CO_2 with a working capacity of 100 mol_{CO2}/m³ and < 100 kJ/mol_{CO2}

Porous Fil

Team and Facilities

University of Michigan

David Kwabi

Fawaz Ali

Sanat Modak

University of Massachusetts Amherst

Trisha L. Andrew

David Bilger

Wesley Viola

Liquid Monomer

Oxidant Crucible

Opportunities for Collaboration

- Modeling of PCET at the electrode/electrolyte interface and charge transport within the porous electrode
- Design of electrochemical cell and gas-liquid contactors for large scale prototyping
- Techno-economic analysis of the influence of electrode and cell cost on cost of captured CO₂