A Combined Water and CO₂ Direct Air Capture System

Project Number: DE-FE0031970

Will Kain IWVC, LLC IWVC

U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Program Overview

- a. Funding \$3.17 million
 - a. DOE: \$2.5 million
 - b. Cost Share: \$672,000
- b. Overall Project Performance Dates -10/1/2020 9/30/2023
- c. Project Participants
 - a. Awardee: IWVC, LLC
 - b. Subawardees: PNNL, Barr Engineering
 - c. Partners: SoCalGas, Siemens, U. North TX, RadMax Technologies
- d. Overall Project Objectives build $30t/y CO_2$ capture demonstration system with simultaneous fresh water production, proving superior technical, economic, and environmental performance

Technology Background

- AWE process integrated with solid sorbent for CO₂ capture
 - Potable water and CO₂ production provide additional revenue and magnifies environmental benefits of DAC
 - Isothermal desiccant regeneration minimizes energy consumption for AWE
- Commercially proven CO₂ sorbent
 - Scaled-up application for DAC
 - Combined thermal and pressure swing regeneration
 - Internal heat recuperation
- Novel contactor design for both sorbents
 - Maximizes heat and mass transfer performance with minimum size, weight, and cost
 - Proven commercial pathway to scale-up

Technical Approach/Project Scope

- a. Project work plan
 - a. BP 1 Design demo system (PNNL, Barr, IWVC, Siemens)
 - BP 2 Build demo system (Barr); Contactor assembly and condenser unit (PNNL); Supplemental CO₂ sorbent (UNT); Vacuum pump (RadMax); System TEA (IWVC)
 - c. BP 3 Operate demo system (IWVC, Barr, SoCalGas); System TEA (IWVC, Siemens)
- b. Key project milestones
 - a. 9/30/2021 demo system (30t/y CO₂) design complete
 - b. 12/31/2022 demo system fabrication and shakedown complete
 - c. 9/30/2023 9 months of demo system operations complete; complete TEA for commercial scale system
- c. Project success criteria
 - ✓ Demonstrate attainment of 30t/y CO₂, 1000L/d H₂O design capacity
 - ✓ Validate modeled values for energy consumption and cost of CO_2

Team and Facilities

Will Kain – IWVC

Pete McGrail, Todd Schaef - PNNL

Ron Kent - SoCalGas

Dan Palo – Barr

Shenqian Ma-UNT

SoCalGas/SDSU-Brawley Site

Opportunities for Collaboration

- a. Synergies from collaboration
 - Collaborate with DAC project teams on CO₂ compression technologies/systems
 - Heat management and recovery strategies to improve efficiency
- b. Areas of complementary work
 - CO₂ market opportunity analysis identifying relevant areas for CO₂ utilization other than geologic sequestration
 - Complementary design, engineering, and fabrication for dehumidification application (private investment)
 - Engagement with organizations designing solid-sorbent systems for industrial CO₂ capture

