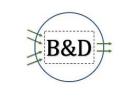
Marine AlGae Industrialization Consortium (MAGIC): carbon capture by and for algae

DOE DE-EE0007091; DE-EE0008518; DE-EE0009278

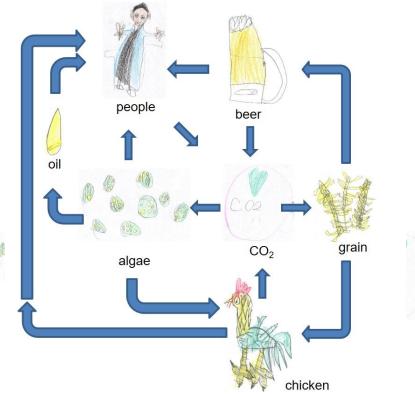


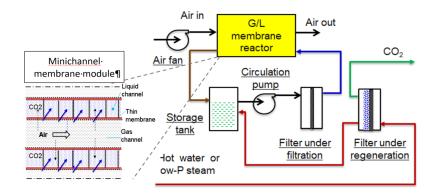
Zackary Johnson February 2021 Direct Air Capture Kickoff

This presentation does not contain any proprietary, confidential, or otherwise restricted information

forging a sustainable future

Program Overview


- MAGIC-C EE0008518: Carbon Utilization Efficiency in Marine Algae Biofuel Production Systems Through Loss Minimization and Carbonate Chemistry Modification (Oct 2018 – Sept 2022; DOE: \$1.5M CS: \$0.4M)
- MAGIC-ABCDE EE0009278: Development of high value bioproducts and enhancement of direct-air capture efficiency with a marine algae biofuel production system (*pending negotiation*: Jan 2021 – Dec 2023; DOE:\$1.9M CS:\$0.5M)


DAC Relevant Project Objectives

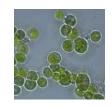
- Demonstration of CO₂ conversion and enhancement of CO₂ use efficiency
- Enhancement of natural algal uptake of CO₂ (i.e. nDAC)
- Refinement of DAC technology (towards C supply for algae biofuel)
- Increased efficiency of DAC generated CO₂ through carbon chemistry modification

MAGIC-Circular Carbon: Technology Background

DAC innovations: (1) thin micro-porous sheets – CO_2 passes, alkaline solution does not, (2) mini-channel membrane, (3) Ni membrane to collect HCO_3 -> less P and T, less \$

DAC Relevant Project Approach

- 1. Convert CO₂ to bicarbonate using CaCO₃ for increased stability/efficiency; lower costs
- 2. Increase gas transfer through cultivation SA/V optimization
- 3. Enhance alkaline solution based DAC using with novel membranes/modules
- 4. Integration of DAC/converter for synergies (e.g. lower [CO₂] generation requirements)



Technical approach / Project Scope

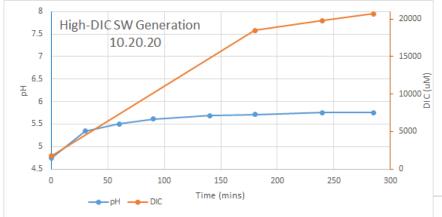
- CO₂ conversion for integration/storage (done, patent#8,828,708)
- Modeling of cultivation redesign (SA/V), ~2022 Q1
- DAC skid for 500 g/d ~2022 Q2
- CO₂ conversion integrated in DAC skid, ~2023 Q4
- DAC+CO₂ conversion used for algae, ~2024 Q3
- LCA/TEA of integrated process, ~2024 Q4

Success is:

- demonstration of nDAC for biofuel algae strain i.e.
 reduced (no!) CO₂ supply for algae (i.e. biological "DAC")
- demonstrated DAC of CO_2 (at <\$100/t) and conversion to other forms of stable ΣCO_2 for algae use

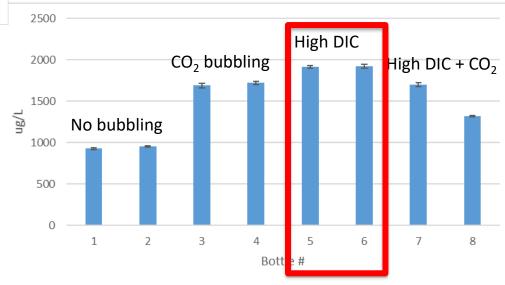
Team and Facilities

6 raceway outdoor pond facility



Team Members: algae, carbon chemistry, membrane/DAC developers (private), TEA, LCA

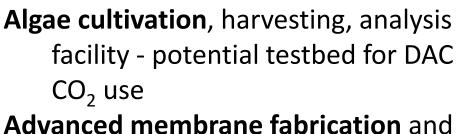
https://www.ml.duke.edu/webcam/algae/



Progress & Current Status

At least one algae strain does better on high DIC than CO₂ bubbling (pH controlled) Generation of air stable >20mM ΣCO₂ DAC capture ☺; further optimization ongoing

Could uncouple CO₂ delivery from algae farms



Opportunities for Collaboration

We're a team.

MoleculeW@ks

testing – porous metal, coated, thickness/porosity controllable, etc.

TEA/LCA for multiple CO₂ product

streams

Aquatic inorganic/organic chemistry characterization/modeling

Other?

Zackary Johnson / zij@duke.edu

