Transformational Sorbent-Based Process for Direct Air Capture

DE-SC0020740 (SBIR Phase I – Office of Science)

> Dr. Ravi Jain InnoSepra, LLC

U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Project Overview

- Total DOE funding: \$246,000
- Project Dates: 6/29/2020 to 3/28/2021
- Partners: InnoSepra, DOE and material suppliers
- Overall project objectives are to demonstrate the potential for a significant reduction in the cost of CO₂ capture directly from air based on lab scale testing and a techno-economic analysis

Technology Background

- Based on physical sorbents in structured form
- High CO₂ capacity at a p_{CO2} of 0.04 kPa (>4-wt%), low heats of adsorption (40-44 kJ/mol of CO₂)
- Materials are low cost, easily scalable to quantities needed for commercial use (thousands of tons), very stable (>5 year life)
- Challenges include fabrication of large quantities in structured form, process demonstration at a commercially relevant scale

Technical Approach/Project Scope

Work Plan

- Materials procurement, fabrication of lab test units
- Measurement of CO₂ sorption/desorption isotherms (0 to 100°C)
- Moisture removal testing (up to 8 Nm³/hr), CO₂ capture testing (up to 1.5 Nm³/hr)
- Techno-economic analysis $-\sim 100$ tons/day CO₂ captured

Key Milestones

- Completion of lab testing 1/31/21
- Completion of techno-economic analysis 3/31/21
- Project Success Criteria
 - Techno-economic analysis showing a potential CO₂ capture cost of <\$200/tonne after successful scale up

Team and Facilities

- DOE Project Manager: Mr. David Lang
- The InnoSepra Team (shown above), not shown Dr. Norberto Lemcoff, Dr. Stevan Jovanovic, Mr. Robert Ferrell
- Key equipment includes sorption microbalance, test units

Current Status of the Project

- Obtained materials for isotherm measurements, breakthrough and cyclic testing
- Built experimental units for moisture removal and CO₂ capture testing
- Measured CO₂ sorption/desorption isotherms at 0-100°C
 - More than 4.5-wt% capacity at a p_{CO2} of 0.04 kPa (400-ppm CO_2 in air)
- Moisture removal to below <1,000 ppm with a very low pressure drop
- A cyclic CO₂ capacity of about 4-wt% with 400-ppm CO₂ in N₂, no sorbent degradation
- The performance is on target for a low cost DAC process

Opportunities for Collaboration

- The technology can be demonstrated quickly at scale through a synergistic combination of
 - Large scale fabrication of CO₂ capture materials
 - Fabrication and testing of the capture equipment incorporating capture materials in structured form at >2,000 Nm³/hr scale
- InnoSepra would welcome opportunities to work with:
 - Companies involved in the fabrication of structured sorbents
 - Engineering companies for process scale up
 - Independent organizations involved in techno-economic analysis of Direct Air Capture
 - Companies interested in scale-up testing
 - Investors / business partners