Transformational Sorbent Materials for a Substantial Reduction in the Energy Requirement for Direct Air Capture

DE-FE0031953

Dr. Ravi Jain InnoSepra, LLC

U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Project Overview

- Total DOE funding: \$800,000; Cost Share: \$200,000
- Project Dates: 10/01/2020 to 3/31/2022
- Project Partners: InnoSepra, DOE, Arizona State University, Missouri University of Science & Technology, Adroitech, Inc. and material suppliers
- Overall objective is to demonstrate that the proposed transformational materials have the potential to reduce the energy required for direct air capture compared to current state-of-the-art technologies by over 50%

Technology Background

- Base materials with high CO₂ capacity (>4-wt% at $p_{CO2} = 0.04$ kPa), low heats of adsorption (40-44 kJ/mol of CO₂) identified
- Chemical modification of base materials to improve capacity
- Low cost materials, easily scalable to quantities needed for commercial use, very stable (>5 year life)
- Challenges include fabrication of large quantities in structured forms

Technical Approach/Project Scope

Work Plan

- Literature review, procurement of base materials
- Optimization of base materials through lab experiments and simulations at DAC conditions ($p_{CO2} = 0.04$ kPa)
- Measurement of CO₂ sorption isotherms and kinetics
- Preparation, testing and characterization of selected materials in beaded and structured forms
- High level process design incorporating the best material

Key Milestones

- Sorbent down-selection based on capacity/energy 6/30/21
- Preliminary technical design and analysis 2/28/22

Project Success Criteria

• A CO₂ capacity >3.5-wt% at DAC conditions with potential for up to 50% reduction in energy requirement

Team and Facilities

- DOE Project Manager: Mr. Sai Gollakota
- Project partners include:
 - InnoSepra: Project management, testing, analysis, reporting
 - Adroitech: GCMC simulations, structured sorbents
 - Arizona State: Sorbent characterization
 - Missouri S&T: Structured sorbents
- Key equipment includes sorption microbalances and test units

Current Status of the Project

- Two key technologies identified through prior art search
 - Carbon Engineering uses an absorption system: reaction with NaOH, followed by regeneration with Ca(OH)₂ and reactivation of CaCO₃ to CaO, hydration of CaO to produce Ca(OH)₂
 - Global Thermostat and Climeworks use amine-impregnated sorbents with either indirect regeneration or direct steam regeneration
 - Both approaches need upwards of 8 GJ/ton of CO₂ in thermal energy, a significant amount of this energy is needed at >900°C for the Carbon Engineering Process
 - Amine-based sorbent can degrade irreversibly, short sorbent life
- Obtained base materials for isotherm measurements and for chemical modifications
 - More than 4.5-wt% capacity at a p_{CO2} of 0.04 kPa

Opportunities for Collaboration

- The technology can be demonstrated quickly at scale through a synergistic combination of
 - Large scale production of CO₂ capture materials
 - Fabrication and testing of the capture equipment incorporating capture materials in structured form (>2,000 Nm³/hr scale)
- InnoSepra would welcome opportunities to work with:
 - Companies involved in fabrication of structured sorbents
 - Research institutions involved in molecular simulations to predict sorption isotherms
 - Independent organizations involved in evaluating various technologies / materials for Direct Air Capture
 - Companies interested in scaling up sorbent manufacture
 - Investors / business partners