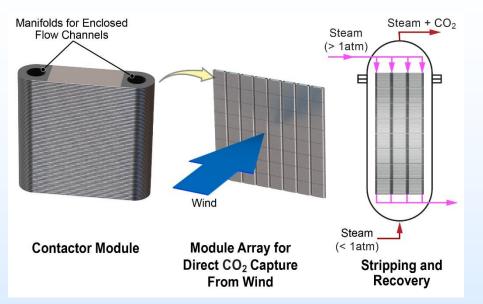
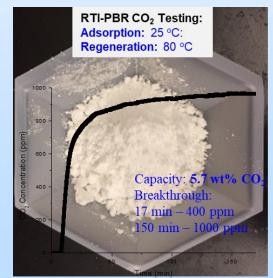
High-Efficiency, Low-Cost, Additive-Manufactured Air Contactor

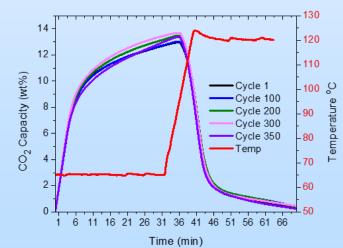

Project Number DE-AR0001412

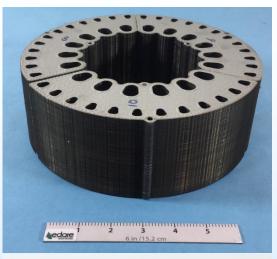
Mike Izenson Creare LLC


U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24–25, 2021

Program Overview

- 1. Funding: \$784K DOE SBIR funding
- 2. Overall Project Performance Dates
 - a. Two-year period of performance
 - b. Start date: TBD (currently finalizing contract)
- 3. Project Participants
 - a. Creare LLC: Contactor analysis, design, testing
 - b. RTI International (RTI): Sorbent development and preparation
 - c. Edare LLC: Contactor fabrication
- 4. Overall Project Objectives
 - a. Demonstrate contactor fabrication
 - b. Measure sorption performance
 - c. Multi-scale CFD analysis
 - d. Concept design for large-scale system
 - e. Techno-economic analysis

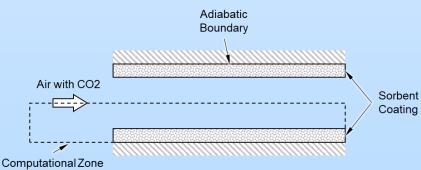

Modular AM Wind-Driven Contactor

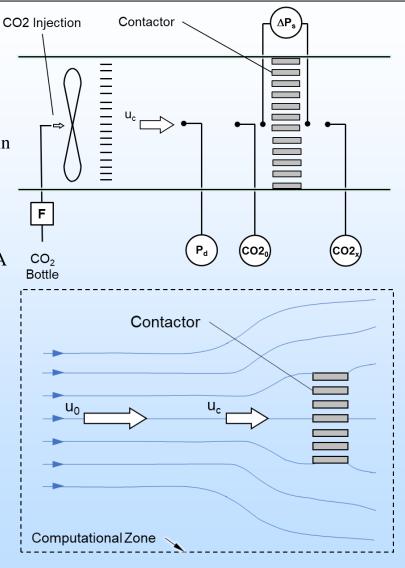


High-Performance Amine Sorbents

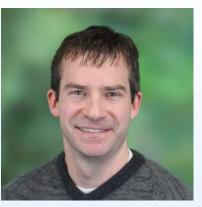
Technology Background

- 1. DAC Concept
 - a. Wind driven
 - b. Additive-manufactured, modular, high-efficiency contactor
 - c. Advanced amine sorbent coatings from RTI
- 2. Supporting Data
 - a. Additive manufacturing for compact heat exchangers
 - b. Sorbent performance under flue gas conditions
- 3. Advantages
 - a. Low-cost contactors and sorbents
 - b. Optimized for wind-driven operation
- 4. Challenges
 - a. Scale-up
 - b. Lifetime qualification





Technical Approach/Project Scope


- 1. Experimental Design and Work Plan
 - a. Produce modular AM metal contactor core
 - b. Develop and optimize sorbent coating
 - c. Measure performance of contactor modules
 - d. Analyze wind-driven installation and sorption processes in single channel using CFD
 - e. Perform TEA based on test results and analysis
- 2. Key Milestones
 - a. Phase I: Contactor performance and results of initial TEA
 - b. Phase II: Performance and durability testing, large-scale system concept design, final TEA
- 3. Success Criteria
 - a. Sorbent loading and cyclic sorption capacity
 - b. Excellent durability for 10 to 100 cycles
 - c. Estimated capture $\cos t < \$100 / t CO_2$

Team and Facilities

Mike Izenson, Creare

Scott Phillips, Creare

Mustapha Soukri, RTI

Jeff Mecham, RTI

Creare General-Purpose Labs

RTI Lab 288

Progress and Current Status

- 1. Equipment to be Used/Built in the Project
 - a. Contactor core fabrication and assembly facilities (existing)
 - b. Contactor module performance test rig
 - c. Computational models for wind-driven contactor
 - d. Dendrimer sorbent synthesis (existing)
 - e. Sorbent coating development and test capabilities
- 2. Significant Accomplishments and How They Tie to the Technology Challenges
 - a. Prior work on modular AM heat exchangers shows feasibility of low-cost manufacture of high-performance contactors
 - b. Prior work on amine sorbents for CO_2 capture from flue gas shows feasibility of high CO_2 cyclic sorption capacity at low operating temperatures
- 3. Current Status
 - a. Project is just getting started

Opportunities for Collaboration

- 1. Synergistic Effects
 - a. Accelerate large-scale demonstration
 - b. Accelerate commercialization
- 2. Potential Areas of Complementary Work
 - a. Scale up manufacturing processes
 - b. Scale-up of CO₂ capture demonstrations