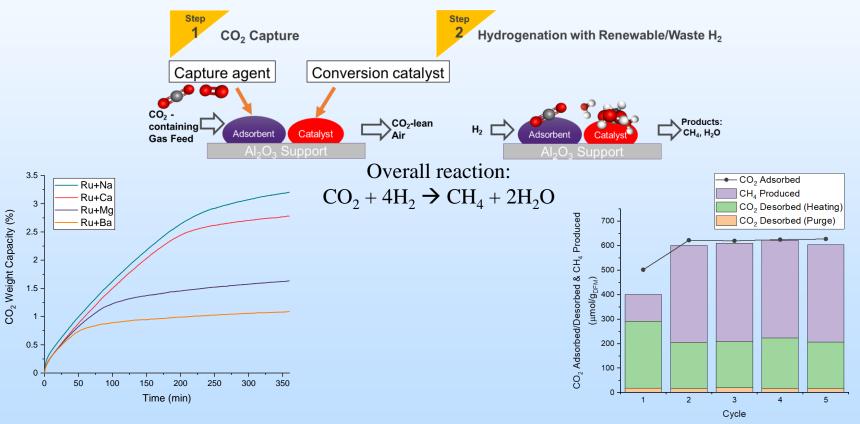
Dual Function Materials for Direct Air Capture of CO₂ SBIR DE-SC0020795

Cory Sanderson / Raghubir Gupta (PI) Susteon Inc.


> U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

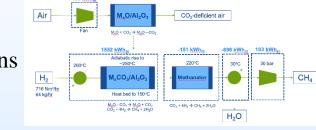
Program Overview

- a. Funding: \$250,000
- b. Overall Project Performance Dates: 07/2020 03/2021
- c. Project Participants:
 - a. Susteon Inc. (Prime)
 - b. Columbia University (Professor Robert Farrauto)
- d. Overall Project Objectives: Development of Dual Function Materials (DFM) for CO₂ capture from air (DAC) and subsequent conversion to renewable natural gas (RNG)

Technology Background

a. Reactive DAC Technology: Capture CO_2 directly from air at ambient condition on Ru/Na₂O/Al₂O₃, followed by *in-situ* methanation at 120-300°C with waste H₂ to enable a cyclic operation.

TGA: Adsorption @ 25°C on 1% Ru, 10% sorbent/Al₂O₃ granules with 375 ppm CO₂/air


Cyclic packed bed: Adsorption @ 25°C and methanaĝon at 300°C on 1% Ru, 10% Na₂O/Al₂O₃ granules

Technical Approach/Project Scope

- a. Experimental design and work plan
 - Optimized DFM composition and test parameters
 - Established kinetics with specified process conditions
 - Conducting cyclic aging studies with ambient air
 - Developing a process design and TEA model
- b. Project schedule

Milestones:

- 1. Identify sorbent candidates
- 2. Develop a process design
- c. Project success criteria
 - Multicycle performance of DFM materials for their CO_2 capture rate, CO_2 capacity, regenerability to produce RNG.
 - Development of a process design and TEA

Tasks / Dates	07/20	08/20	09/20	10/20	11/20	12/20	01/21	02/21	03/21
Task 1. Project management and planning									
Task 2.1. Experimental Setup									
Task 2.2. Aging Studies for DAC									
Task 2.3. CO ₂ /Air Adsorption/Desorption Rate Studies									
Task 3. Data Processing and TEA									

Basis: 1 ton/day of CO2

Team and Facilities

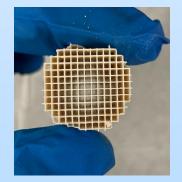
Raghubir Gupta President

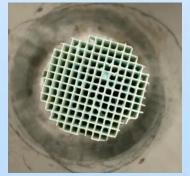
S. James Zhou Senior Director

Jian Zheng Sr. Engineer

Susteon

Cory Sanderson Vasudev Haribal Process Technologist Research Chem. Engineer

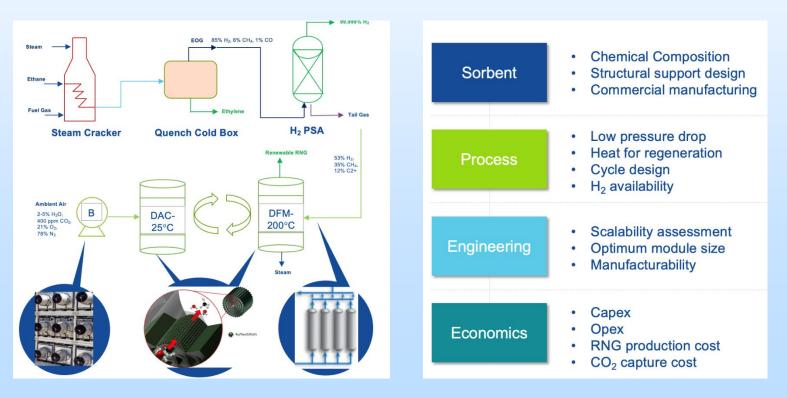

Robert Farrauto Professor



Chae Jeong-Potter Ph.D. Candidate Monica Abdallah Ph.D. Candidate

Columbia University

Industrial Partners Anglo-American Con Edison Riogen



Progress and Current Status of Project

- a. Completed screening of DFM to identify leading candidate
- b. Evaluated various process cycle designs
- c. Initiated techno-economic analysis

6

Opportunities for Collaboration

- Partnership for developing structured materials
- Identification of a waste hydrogen source refinery and petrochemical plants
- Identification of engineering partners for scale-up and manufacturing

COLUMBIA UNIVERSITY

