TRAPS: Tunable Rapid-uptake AminoPolymer Aerogel Sorbent for direct air capture of CO₂ DE-FE0031951

Mahati Chintapalli PARC, a Xerox Company

> U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Program Overview

- Funding: \$0.8M DOE & \$0.2M Cost Share
- Period of performance: 18 months
- Team:

- Objectives:

- Synthesize sorbent with high equilibrium capacity (4 mmol/g), rapid uptake rate (0.15 mmol g⁻¹ min⁻¹), and long oxidative stability
- Characterize sorbent in a fixed bed reactor at >25 g scale
- Model performance and cost of a DAC process with the sorbent ²

Technology Background

Temperature swing sorbent based on PARC's porous polymer synthesis platform

PARC aerogels:

- Moderate porosity ٠
- Ambient dried/scalable
- High surface area
- Thin pore walls
- Tunable chemistry
- Variety of formfactors

Non-sorbent aerogels

Challenges:

- Adapting synthesis to incorporate amine
- Maximizing amine content without sacrificing pore structure
- Achieving long cycle life is a challenge for solid sorbents, in general

Develop Sorbent

CO₂

Key Innovation: Polyamine aerogel

Anticipated Benefits

High capacity: 4 mol CO₂ kg⁻¹ High amine content Thin pore walls, 10s nm

Fast kinetics: 0.15 mol CO₂ kg⁻¹ min⁻¹ Mesoporous (10s nm scale) Specific surface area: 100-1000 m²/g

Degradation resistance Material structure

Low sensible heat load Low inactive mass

Technical Approach/Project Scope

Success Criteria:

- Measure sorbent and physical properties in State Point Table
- Achieve CO₂ adsorption up to 4 mmol/g at 0.15 mmol/g/min and desorption down to 0.4 mmol/g at 0.3 mmol/g/min, at 400 ppm in air
- Conceptual process design and cost and performance projections to enable next stage development: integrated prototype and field testing

Current Status

- Pore size and porosity control through proprietary synthesis conditions
- Surface area: surface functionalization, CO₂ uptake

materials

Porosity: heat capacity and thermal conductivity, durability

Team and Facilities

PARC Team

PI: Dr. Mahati Chintapalli Dr. Gabriel Iftime Dr. Stephen Meckler Dr. Rahul Pandey

Livermore Team

Team lead: Dr. Joshuah Stolaroff Dr. Nathan Ellbracht Dr. Wenqin Li Dr. Simon Pang

Preliminary characterization @ PARC

Pore characteristics

Sorption

Fixed bed characterization @ LLNL

Gemini: custom fixed bed sorbent testing instrument

Opportunities for Collaboration

This project: TRL 2 \rightarrow TRL 3

Partnerships for further technology development:

- Detailed design of integrated DAC system
- Passive or low pressure drop systems
- Field and pilot unit construction and testing
- Technology commercialization

Collaboration with PARC/Xerox: engage@parc.com

- Multidisciplinary research: materials, hardware systems, software
- Cleantech strategic business unit for technology commercialization