Development of An Off-Shore, Stand-Alone System For Efficient CO₂ Removal from Oceanwater

ARPA E TINA Program Harry A. Atwater California Institute of Technology

> U.S. Department of Energy National Energy Technology Laboratory **Direct Air Capture Kickoff Meeting** February 24-25, 2021

Program Overview

- a. Funding: DOE ARPA-E \$850k
- b. Overall Project Performance Dates: 24 months, beginning est. March 2021
- c. Project Participants: Caltech and U.C. Irvine
- d. Overall Project Objectives: Develop an off-shore, stand-alone system for efficient and cost-competitive removal of CO_2 from oceanwater. The two main objectives of this project are to demonstrate
 - a. a multi-cell electrodialyzer that operates at high current densities (>1 A cm²), and
 - b. a novel membrane contactor that exhibits unprecedented rates for CO_2 removal from only slightly acidified oceanwater (pH \approx 7).

At the end of the project, we will deliver a power-matched and flux-matched electrodialyzer and membrane contactor prototype for continuous operation at a CO_2 capture rate of 2.1 L min-1 (\geq 24 h, \leq 0.5 MWh/t-CO₂ efficiency). The aim is to provide a proof-of-concept that device-level innovations can be coupled into a system that can meet the FOA cost target of \$100/t-CO₂ at the Gt-CO₂/yr scale.

Technology Background

Oceanwater vs Direct Air Capture

- CO₂ concentration (~130 times better per volume, and ~6 times worse per weight) Air: 0.775 mg L⁻¹
 - Seawater: 99.1 mg L⁻¹
- Ocean capture represents a direct reversal of ocean acidification caused by anthropogenic CO₂ emissions
- Ocean capture has the potential to operate offshore, which limits competitive land use for useful land and allows easy access to CO₂ storage sites.

Oceanwater Capture Challenges

- Oceanwater intake and pre-treatment dominate the cost of land-based oceanic CO₂ removal systems.
 - \$1.4M/million gallon-day (from desalination plants)= \$1839/ton-CO₂
- Co-location of oceanic CO₂ removal systems with desalination plants is not scalable.

Oceanwater feed from the largest desalination plants = 83 k-ton/year All potable water currently consumed worldwide (4.3 trillion m^3/yr) = 0.95 Gt-CO₂/yr

• Electrodialyzers to produce acid/base have a high CapEx and associated BOS costs

Operating current density limited to < 200 mA cm⁻²

• Acidified oceanwater is required to help drive gaseous CO₂ removal

Liquid-gas contactor requires acidified oceanwater at pH~4

Technical Approach/Project Scope

A record-low electrochemical energy consumption of 0.98 kWh/kg CO₂ was demonstrated at lab-scale (0.23 kWh/kg is the thermodynamic limit).

Nat. Commun. **2020**, 11 (1), 4412

- Design and model optimal electrodialyzer cell architecture
- Synthesis and characterization of bipolar membranes for high current density operation
- Development of custom membrane contactor for CO₂ removal from high pH water
- Demonstration of a proof-of-concept system using oceanwater

Team and Facilities

Opportunities for Collaboration

- a. Seeking collaborators with experience and understanding of oceanic environment
- b. Interest in application of electrochemical pH swing concepts in direct air capture systems
- c. Potential common ground in scale and technoeconomic analysis