High-Performance, Hybrid Polymer Membrane for Carbon Dioxide Separation from Ambient Air

Project Number: DE-FE0031968

Maksudul M. Alam, Ph.D.
InnoSense LLC, Torrance, CA

U.S. Department of Energy
National Energy Technology Laboratory
Direct Air Capture Kickoff Meeting
February 24-25, 2021
Outline

a. Project Overview
b. Technology Background
c. Project Objectives
d. Technical Approach/Project Scope
e. Team and Facilities
f. Progress and Current Status of Project
g. Plan for Future Development
h. Summary
i. Opportunities for Collaboration
j. Acknowledgements
Program Overview

a. Funding: DOE $799,985 and Cost Share $200,001

b. Overall Project Performance Dates: 01/01/2021 – 06/30/2022

c. Project Participants: InnoSense LLC (Torrance, CA) and University of Utah (Salt Lake City, UT)

d. Overall Project Objectives: Develop hybrid polymer membrane capable of direct air capture (DAC) CO$_2$ separating from ambient air at a low cost (low hundreds in $) per metric tonne by 2030
Technology Background

- Carbon dioxide (CO$_2$), captured directly from ambient air, is a leading method for reducing greenhouse gas emissions.

- A recent study estimates that primary processes envisioned for large-scale CO$_2$ capture from ambient air can cost $94–$232 per metric tonne.

- Current methods of DAC CO$_2$ separation from ambient air (~0.04%) are intrinsically inefficient due to:
 - Thermal energy losses,
 - Large footprint,
 - Degradation of sorbent materials.

- Sorbents and solvents used in the DAC process have many disadvantages:
 - Need to build a very large structure,
 - High cost and complexity of regenerative systems,
 - Loss of moisture in dry environments.
Project Objectives

The overall objective of this project is to develop a disruptive DAC CO\textsubscript{2} separation system using a hybrid polymer membrane (HypoMem) from ambient air to reduce CO\textsubscript{2} separation costs and energy penalties.

Step-by-step processes for developing HypoMem

Technical Objectives

Objective 1. Developing highly CO\textsubscript{2} selective HypoMem. Fabricate ultra-thin functionalized polymer membrane, HypoMem.

Objective 2. Demonstrating lab-scale system for DAC CO\textsubscript{2} separation from simulated air. Construct a lab-scale DAC system, and test and evaluate HypoMem performance.

Objective 3. Demonstrating a cost-effective DAC CO\textsubscript{2} separation system from ambient air.
Technical Approach/Project Scope

An overall process of HypoMem based DAC CO$_2$ separation system

1. Simulated Air Pre-Condition
 - Simulated Air
 - Humidity Control
 - Gas Mixer & Compressor
 - Heater (Temp. Control)

2. Membrane Fabrication
 - Active Layer Production
 - Support Layer Production
 - Membrane Characterization

3. CO$_2$ Separation System
 - Spiral Wound Membrane
 - Hollow Fiber Membrane

4. Post-Gas Evaluation
 - Permeate Gases
 - Analytical Instrument
 - 95% Purity
 - 90% Recovery
 - Reject Gases

95% CO$_2$ Separation Efficiency
Technical Approach/Project Scope

a. Experimental design and work plan

<table>
<thead>
<tr>
<th>Membrane Development</th>
<th>Evaluation and Optimization</th>
<th>Simulation and Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.0 – Develop Active Layers for CO₂ Separation with High Selectivity and Permeability</td>
<td>Task 3.0 – Integrate Active Polymer Composite with Support Layer to Form CO₂ Capture Membrane</td>
<td>Task 5.0 – Demonstrate Bench-Scale CO₂ Separation System with HypoMem</td>
</tr>
<tr>
<td>Task 2.0 – Integrate Active Polymer Composite with Support Layer to Form CO₂ Capture Membrane</td>
<td>Task 4.0 – Evaluate Process and Optimal Design of CO₂ Separation System</td>
<td>Task 6.0 – Assess Design and Scalability of a Pilot-Scale CO₂ Separation System</td>
</tr>
<tr>
<td>Task 7.0 – Conduct Techno-Economic Analysis (TEA), Technology Gap Analysis, and Environmental Health and Safety Risk (EH&S) Assessment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Project schedule:

Milestone 1: Fabricated and characterized ultra-thin robust HypoMem with ≥80% reproducibility for the CO₂ separation system. Completion date: 11/30/2021

Milestone 2: Constructed Phase I CO₂ separation system and demonstrated mass transfer and CO₂ separation. Completion date: 04/30/2022

Milestone 3: 100% process simulation and design documents, design for commercial scale facility system, and performance data compiled and completed. Completion date: 06/30/2022

c. Project success criteria: (1) Developed ultra-thin robust polymeric composite active layers (10–50 µm thickness and ≥80% reproducibility), and (2) HypoMem achieves CO₂ permeability of 1500 barrers and ideal CO₂/N₂ selectivity of ~100.
Team and Facilities

InnoSense LLC Team

Maksudul M. Alam, PhD
Principal Investigator

Adrien Hosking, MS
Design & Formulation Scientist

Marquise Bartholomew, BS
Research Engineer

University of Utah Team

Professor Milind Deo, PhD
Subaward Project Director

Cleanroom Certified ISO-7

Scanning Electron Microscope (SEM)

Differential Scanning Calorimetry (DSC)
Progress and Current Status of Project

- Procured component polymers for fabricating polymer active layers
- Procured carbon support materials to fabricate HypoMem samples

Steps to fabricate polymer active layers

1. Disperse and dissolve polymer(s) in a suitable solvent (common solvents such as tetrahydrofuran, chloroform, dichloromethane, dichloroethane, N-methylpyrrolidone, etc.
2. Add functionalized nanomaterials to increase permeability and selectivity of CO$_2$.
3. Cast onto substrate and dry under heat (~60 °C) to remove solvent.
Progress and Current Status of Project (Cont’d)

Polymer thin films

Fourier Transform Infrared (FTIR) Instrument

FTIR spectra of component polymers
Progress and Current Status of Project (Cont’d)

Steps to fabricate HypoMem samples for DAC CO$_2$ separation

1. Create support layers of different pore sizes.
2. Cast support layer onto active layer fabricated.
3. Characterization will be performed with FT-IR, Raman spectroscopy, SEM, TGA, DSC, etc. to determine change in chemical structure, thermal decomposition and degradation and cross-linking density.
Progress and Current Status of Project (Cont’d)

Schematic of a lab setup for testing HypoMem samples

- Use simulated air to perform permeation experiments under dry (RH <30%) and wet conditions (RH >70%).
- Correlate membrane performance with active layer thickness, composition, casting wt.% and gas kinetic diameter.
Progress and Current Status of Project (Cont’d)

Conduct Techno-Economic Analysis (TEA), Technology Gap Analysis, and Environmental Health and Safety Risk (EH&S) Assessment

➢ TEA: Cost estimates will be determined based on the energy and mass balance (EMB) requirements derived from bench-scale experiments.
 - Direct byproduct of process simulation
 - Bare module costs for individual units
 - Approximate plant costs
 - Preliminary economics
 - Net present value and internal rate of return calculations using simple assumptions

➢ Technology Gap Analysis: Analyze strengths and weakness for CO₂ separation system and determine if the system can be improved by existing technologies.

➢ EH&S: Perform an assessment of environmental health and safety risk to ensure protection of employees, the public and the environment.
Plans for Future Development

• In this project
 ▪ Project just started, we will focus on project work, tasks, and meetings to achieve stated milestones and success criteria.

• After this project
 ▪ Prototype development and field level testing for DAC CO$_2$ separation from ambient air.
Summary

- We are developing a DAC CO$_2$ separation system using HypoMem to reduce CO$_2$ separation costs and energy penalties
- Revised and updated project management related documents
- Began procuring required chemicals and reagents (\geq20% done)
- Began preparing thin films of polymer active layers
Opportunities for Collaboration

a. Collaboration will facilitate development of functional membrane materials, design and develop robust membrane, system development, understanding parameters to optimize, process feasibility, economic viability, scale-up and commercialization.

b. Potential areas of complementary work that others may contribute to this technology:
 - Design and develop functional materials,
 - Analyze membrane’s properties,
 - Design and setup large-volume air capture and flow (modeling and experimental setup), and
 - Design and integration of analytical instrument for accurate determination of CO$_2$ separation, concentration, and efficiency.
Acknowledgements

- Financial and Technical Support
 (DOE Contract No.: DE-FE0031968)

- DOE Office of Fossil Energy Project Manager Dustin Brown and Relevant Scientists/Personnel