Transformational Molecular Layer Deposition Tailor-Made Size-Sieving Sorbents for Post-Combustion CO₂ Capture DE-FE0031730

Patrick Underhill, Rensselaer Polytechnic Institute James Ritter, University of South Carolina Miao Yu, University at Buffalo

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Overview

Funding: \$3,000,000 from DOE; \$759,206 Cost Share Overall Project Performance Dates: 10/1/2019-9/30/2023 Project Participants:

Develop a transformational molecular layer deposition tailor-made sizesieving sorbent/PSA process (MLD-T-S/PSA) that can be installed in new or retrofitted into existing pulverized coal (PC) power plants for CO_2 capture with 95% CO_2 purity and a cost of approximately \$30 per tonne of CO_2 captured; it will be ready for demonstration by 2030. 2

Technology Background

Integration with coal-fired power plants: installed downstream of FGD

Technology Background

USC's unique PSA process flow sheet from FGD through CO₂ compression

Technology Background

Technical and economic advantages

- Precise control of the MLD coating properties to form appropriate pore misalignment for molecular sieving
- > Degradation of MLD sorbent performance in the presence of flue gas contaminants
- \blacktriangleright Lower CO₂ purity when integrating MLD sorbent with the new PSA cycle
- schedule concept

Technical Approach/Project Scope

Experimental design and work plan

Key milestones and success criteria

BP1: Achieve performance targets for the MLD tailed-made sorbents and achieve baseline PSA
Success criteria: i) MLD tailor-made sorbent showed CO₂/N₂ selectivity ≥130 with simulated flue gas containing water; the measured heat of adsorption for CO₂ is < 35 kJ/mol;
ii) 1-Bed PSA testing with MLD T-S and follow-on DAPS simulation validated that the required beds can be

reduced to \leq 48 for a 550 MWe (net) power plant.

BP2: <u>Achieve 95% CO₂ purity and 90% CO₂ recovery with the MLD-T-S/PSA skid for actual flue</u> gases at National Carbon Capture Center (NCCC) and validate DOE cost goal.

Success criteria: i) Sorbent/PSA skid testing at NCCC using flue gas complete, 70-90% CO₂ removal rate achieved, 95% CO₂ purity validated, and sorbent shows good stability during a 200-h continuous testing; ii) Final TEA report issued. DOE cost goal (cost of electricity 30% less than baseline CO₂ capture approach Case B12B, or approximately \$30 per tonne of CO₂ captured) validated.

Technical Approach/Project Scope

Risks and mitigation strategies

Description of Risk	Probability*	Impact*	Risk Management Mitigation and Response Strategies				
Technical Risks:	1						
Separation selectivity of the MLD tailor- made sorbents not as high as ideal selectivity (>130)	Moderate	Moderate	• Identify new approaches to improve CO ₂ /N ₂ separation selectivity besides the proposed approaches				
Decrease in separation performance of the tailor-made sorbents in the presence of flue gas contaminants	Low	Moderate	 Identify approaches to improve stability of the sorbent in the presence of flue gas contaminants; Measure allowable contaminant levels of the sorbent and identify flue gas clean-up requirements upstream of the CO₂ capture process; and Design the PSA system based on the steady state performance of the sorbent in the presence of flue gas contaminants 				
Column pressure drop not sufficiently low when using the new PSA cycle schedule concept	Moderate	Moderate	 Improve PSA process design; and Add more adsorption beds 				
95% CO ₂ purity not achieved when integrating the size-sieving sorbents with the new PSA cycle schedule concept	Low	High	 Further improve performance of the MLD tailor-made sorbents; and Based on the CO₂ purity obtained, Prof. Ritter's Research Group at USC will use their expertise to re-design the PSA process to achieve 95% CO₂ purity. 				
Cost of the process not in line with expected outcome	Moderate	High	 Improve manufacturing process to lower MLD sorbent costs; and Further optimize process design of the PSA system integrated with the MLD sorbent 				
Resource Risks : Minimal – RPI, USC, GTI, Trimeric, and NCCC have qualified personnel and equipment in place.							
Management Risks: Minimal – RPI, USC,	GTI, Trimeric, a	and NCCC are	e implementing project management systems to minimize management risks.				

Progress and Current Status of Project

Atomistic simulations

- Designed geometry to use molecular dynamic (MD) simulations to quantify preferential interfacial transport
 - Slab of base sorbent
 - MLD coating on top and bottom
 - Exposed to gas phase on top and bottom
 - Kinetics of transport of gas into middle of sorbent calculated over time
- Screened candidates for different
 - Pore size, mismatch, and shape
 - Base sorbent and exposed crystal plane

Atomistic simulations-cont'

• Best candidates can help direct strategies to design better modified sorbents

		Origi	nal 5A		Cut	: 5A	13X			
	Flat 0.4nm		Taper 0.6nm		Flat C	.4nm	Flat 0.4nm			
	Aligned	Misalign by 0.6nm	n Aligned Misalign by 0.3nm		Aligned	Misalign by 0.3nm	Aligned	Misalign by 1.2nm		
Selectivity divided by case with no MLD	1.4	4.3	3.1	5.1	0.5	1.2	0.3	2.9		

- Synergistic opportunities and future testing
 - Use simulations to understand modifications within interior of base sorbents

UB equipment description

2. Single-component adsorption capacity, mixture capacity, and working capacity measurement systems

Single-component isotherm measurement system

TPD-MS system: Mixture capacity

TGA: Cyclic CO_2/N_2 working capacity

Sorbent optimization

Sorbent optimization:

- Screened MLD modified samples with CO₂ and N₂ single-component isotherms
- Established relationship between MLD and CO₂ capacity and selectivity

Key findings of optimized sorbent

Single-component isotherm data

Optimized sorbent properties:

- Maintain high CO_2 capacity under relevant PSA conditions (0.05 to 0.15 bar)
- Dramatically improved CO_2/N_2 selectivity ٠
 - Reduced operating costs due to reduced PSA purification steps 0

Three best large scale VSA systems simulated to date via DAPS

- Achievement: The three-best simulated VSA systems that require the least number of beds are an 8-unit 10-bed 13-step VSA cycle (i.e., an 80 bed VSA system), a 2-unit 10-bed 13-step VSA cycle (i.e., a 20 bed VSA system) and an 8-unit 13-bed 20-step VSA cycle (i.e., a 104 bed VSA system).
- 80 bed VSA System Process Performance: 95.9 vol% CO_2 purity, 91.8% CO_2 recovery and 448 ppm O_2 concentration in the heavy product, with 23.2 kJ/mol of energy consumed and 127 L(STP)/h/kg throughput.
- 20 bed VSA System Process Performance: 99.0 vol% CO_2 purity, 90.0% CO_2 recovery and 59 ppm O_2 concentration in the heavy product, with 25.3 kJ/mol of energy consumed and 127 L(STP)/h/kg throughput. To reduce the number of beds from 80 to 20, the particle diameter of the adsorbent was increased from 3 mm (commercial) to 9 mm (potentially commercial), with only a 9% increase in the energy penalty.
- 104 bed VSA System Process Performance: 99.4 vol% CO_2 purity, 90.1% CO_2 recovery and 6.5 ppm O_2 concentration in the heavy product, with 31.8 kJ/mol of energy consumed and 102 L(STP)/h/kg throughput. To reach the 10 ppm limit on the O_2 content, the number of beds increased from 80 to 104, with a 37% increase in the energy penalty.

USC Experimental systems designed and constructed at USC

100 Hz Volumetric Frequency Response (VFR) System

Achievement: A unique100 Hz volumetric VFR was designed, constructed and became operational at USC. This system will be used to measure mass transfer rates and mechanisms in virgin and MLD modified zeolite beads.

6-Bed PSA System: Modified and Upgraded for This Project

Achievement: A unique 6-bed PSA system was designed, constructed and became operational at USC. It was modified and upgraded operate with 2 feed or 2 light reflux beds. Start-up and troubleshooting have commenced, with preliminary results obtained soon.

Plans for future testing/development/ commercialization

In this project

MLD modified sorbents: Further optimize MLD and calcination conditions to

improve sorbent properties and conduct systematic evaluation of sorbent performance with the presence of water and contaminants.

<u>PSA</u>: Further DAPS simulation and 4-bed PSA testing; design and construction of a MLD-T-S/PSA system.

<u>TEA</u>: Conduct detailed techno-economic analysis based on experimental results.

After this project and scale-up potential

16

Summary

- Molecular Dynamics (MD) simulations were used to identify how the transport at the MLD/base sorbent interface can enhance the overall selectivity. Future simulations that include modifications within the base sorbent will expand the design space of modified materials.
- MLD was shown as an effective technology to modify 13X zeolite and optimized its properties relevant to PSA; the optimized sorbent showed almost no loss in CO₂ working capacity and approximately a doubling of CO₂/N₂ selectivity under relevant PSA conditions.
- Simulations with DAPS have shown that it might be possible to have a 2-unit 10bed 13-step VSA cycle, i.e., a 20 bed VSA system when using a 9 mm diameter 13X zeolite bead; a unique scaling procedure was developed to meet pressure drop requirements and bed design constraints while minimizing the total surface area of the beds required in the VSA system.

Appendix

Organization Chart

Gantt Chart

ID	Task	Subtask	Milestone	Task Name	Start	Finish	Group	012	2020			2021			2022		
1				Budget Period 1	Tue 10/1/19	Wed 3/31/21				20210		4 0.01		5 014	Our Our2		•
2	1.0			Project Management and Planning	Tue 10/1/19	Fri 9/30/22	RPI, GTI, USC										
3			1.1	Updated Project Management Plan	Wed 10/30/19	Wed 10/30/19	RPI, GTI, USC		▶ 10/30								
4			1.2	Kickoff Meeting	Wed 12/30/20	Wed 12/30/20	RPI, GTI, USC					▶ 12/3	ø				
5			1.3	Technology maturation plan submitted	Wed 12/30/20	Wed 12/30/20	RPI, GTI, USC					12/3	0				į
6			1.4	Continuation application for BP2 submitted	Thu 12/31/20	Thu 12/31/20	RPI, GTI, USC					12/3	1				
7			1.5	Submit BP1 Report	Fri 4/30/21	Fri 4/30/21	RPI, GTI, USC	-					4/30				
8			1.6	Submit Final Technical Report	Fri 12/30/22	Fri 12/30/22	RPI, GTI, USC	-								12/30	1 🍬
9	2.0			Mathematical Modeling	Tue 10/1/19	Tue 6/30/20	RPI, USC										
10		2.1		Size-sieving Sorbents	Tue 10/1/19	Tue 6/30/20	крі]							
11			2.1	> three (3) promising sorbent materials screened by computational simulation	Tue 6/30/20	Tue 6/30/20	RPI			• 6	6/30						
12		2.2		PSA Process Modeling with the New PSA Cycle Schedule Concept and Zeolite 13X	Tue 10/1/19	Tue 6/30/20	USC										
13			2.2	Promising modeling with the new PSA cycle	Tue 6/30/20	Tue 6/30/20	USC			ar 6	5/30						
				concept showed the number of beds required for a 550 MWe (new) power plant can be reduced from 240 to 48													
14	3.0			Development of Molecular Layer Deposition Tailor-made Sorbents	Tue 10/1/19	Tue 6/30/20	RPI										
15			3.1	< 30 nm thick MLD coatings deposited on screened base sorbents	Tue 3/31/20	Tue 3/31/20	RPI		•• 3	3/31							
16	1		3.2	MLD sorbent showed CO2/N2 selectivity>130 at	Tue 6/30/20	Tue 6/30/20	RPI				5/30						
				20 oC, CO2 partial pressure of 0.15 bar, and N2 partial pressure of 0.85 bar. The measured heat of adsorption for CO2 is <35 kJ/mol													
17	4.0			Development of Sorbent towards Good Stability in the Presence of Water Vapor	Wed 7/1/20	Wed 3/31/21	RPI						1				
18			4.1	MLD sorbent showed CO2/N2 selectivity >130 with simulated flue gas containing water; effective desorption method to recover >80% of the CO2 capacity	Wed 3/31/21	Wed 3/31/21	RPI						3/31				
19	5.0			Single-bed Testing and Simulation for the	Wed 7/1/20	Wed 3/31/21	USC						ղ				
20			5.1	1-Bed PSA testing with MLD sorbent and follow-on DAPS simulation validated that the required beds can be reduced to ≤ 48 for a 550 MWe (net) power plant.	Wed 3/31/21	Wed 3/31/21	USC						3/31				
21				Budget Period 2	Thu 4/1/21	Fri 12/31/21											
22	6.0			Assessment of CO2 capture performance in the Presence of Flue Gas Contaminants and Further	Thu 4/1/21	Fri 12/31/21	RPI										
23			6.1	Allowable contaminant (including O2, Ar, SO2 and NO2) levels identified	Fri 12/31/21	Fri 12/31/21	RPI							•	12/31		
24	7.0			Further Single-bed Testing and Simulation for the Sorbents Development under Task 6	Thu 4/1/21	Fri 12/31/21	USC										
25			7.1	Further simulation and 1-bed PSA testing with improved sorbents validated that CO2 capture with 95% CO2 purity and a cost of ~\$30 per tonne of CO2 captured can be achieved	Fri 12/31/21	Fri 12/31/21	USC							•	12/31		
26	8.0			Design and Construction of a Sorbent System	Tue 6/1/21	Fri 12/31/21	GTI, USC	1									
27	1	8.1		Determination of Required Pretreatment	Tue 6/1/21	Thu 9/30/21	GTI	1									
28		8.2		Process Simulation and Design	Tue 6/1/21	Thu 9/30/21	USC										
29		8.3		Construction of the S3 Skid	Fri 10/1/21	Fri 12/31/21	USC										
30			8.1	Construction of sorbent/PSA skid complete; 95% CO2 purity achieved when testing the constructed skid using simulated flue gas	Fri 12/31/21	Fri 12/31/21	USC							•	12/31		
31	9.0			Testing of skid at NCCC using Actual Flue Gas	Sat 1/1/22	Fri 9/30/22	RPI, GTI, USC										
32		9.1		Installation on On-site Shakedown	Sat 1/1/22	Mon 2/28/22	GTI								 h		
33			9.1	Commissioning complete and sorbent/PSA skid system ready for testing at NCCC	Mon 2/28/22	Mon 2/28/22	GTI								~ 2/28		
34		9.2		Field testing Sorbent Material Support	Sat 1/1/22	Fri 9/30/22	RPI										
35			9.2	500 to 1000 grams of MLD tailor made sorbent shipped to NCCC	Mon 2/28/22	Mon 2/28/22	RPI								🍌 2/28		
36		9.3		Field testing Process Support	Sat 1/1/22	Fri 9/30/22	USC										
37			9.3	Skid testing at NCCC complete, 70-90% CO2 removal rate achieved, 95% CO2 purity validated, and system shows good stability during a 200-h continuous testing	Fri 9/30/22	Fri 9/30/22	RPI, GTI, USC									9/30 ኛ	2
38		9.4		CO2 Capture Testing of the System at NCCC using Actual Flue Gas	Tue 3/1/22	Fri 9/30/22	GTI										
39	10.0			Detailed Techno-Economic Analysis	Wed 6/1/22	Fri 9/30/22	Trimeric									1	
40			10.1	Issue techno-economic analysis report	Fri 9/30/22	Fri 9/30/22	Trimeric									9/30 🝼	