

FWP-FEAA 384

Intensified, Flexible, and Modular Carbon Capture Demonstration with Additively Manufactured Multi-Functional Device

Costas Tsouris, Josh Thompson, Gyoung Jang, Jim Parks Manufacturing Science Division, Energy Science & Technology Directorate National Energy Technology Laboratory Carbon Capture, 2021 Integrated Review Webinar August 12, 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Program Overview

- Funding provided by DOE-FE: \$1.5M
- Overall Project Performance Dates: January 1, 2021 – December 31, 2022
- Project Participants:
 Costas Tsouris, Josh Thompson, Gyoung Jang, Jim Parks
- Previous Project: FWP-FEAA375
 January 1, 2020 December 31, 2020
 Objective: Test intensified process with low-aqueous solvent

Overall Project Objectives

- Design, and construct a larger-scale column (Column B) than the one previously tested at ORNL to:
 - Further demonstrate enhanced CO₂ capture with 3D printed intensified devices for aqueous amine-based capture at realistic operating conditions
 - Demonstrate that Column B can be modularized with segmented packing elements and intensified devices for low-aqueous-solvent based capture
 - Demonstrate that Column B can be used to effectively capture CO_2 from different CO_2 gas compositions and during process transients (i.e., capacity ramping up and down anticipating the intermittent nature of renewable generations).

Technology Background How the technology is envisioned to work in operation:

CAK RIDGE

Absorption/Desorption System at the National Carbon Capture Center NCCC) $2MEA + CO_2 \rightleftharpoons MEAH^+ + MEACOO^- (+ 79-100 \text{ KJ/mol}) \text{ (Exothermic)}$ Intensified packing device to allow in situ cooling

Technology Background Technology development efforts prior to current project:

• System tested for hydraulic and heat transfer performance with favorable results

Miramontes, E.; Love, L.J.; Lai, C.; Sun, X.; Tsouris, C. Additively Manufactured Packed Bed Device..., *Chem. Eng. J.*, **388**, 124092, (2020).

Technology Background Tests for CO₂ capture enhancement:

Schematic of testing facility and absorption column CPE: Commercial Packing Element

Technology Background Testing of intrastage cooling with aqueous MEA:

Air Flow Rate (LPM)	CO ₂ Flow Rate (LPM)	CO₂ Conc. (%)	Molar Capture Rate Before Cooling (mol/min)	Molar Capture Rate After Cooling (mol/min)	Fractional Increase (%)	Capture Efficiency (%) (Before → After Cooling)
810	90	10	2.24	2.30	2.7	59.9 → 61.2
510	90	15	2.75	2.90	5.5	73 → 77
360	90	20	2.95	3.29	11.5	$78 \rightarrow 88$
264	90	25	3.52	3.57	4.3	$94 \rightarrow 98$
360	40	10	1.38	1.45	5.1	83 → 87
360	63.5	15	1.53	1.77	15.7	58 → 67
360	90	20	2.95	3.29	11.5	$78 \rightarrow 88$
360	120	25	3.07	3.28	6.9	62 → 66

Solvent flowrate: 3.2 LPM

Solvent input temperature: 70 °C

• Miramontes, E.; Jiang, E.A.; Love, L.J.; Lai, C.; Sun, X.; Tsouris, C. Process Intensification of CO₂ Absorption Using a 3D Printed Intensified Packing Device, *AIChE J.* **e16285**, (2020).

Technology Background – Testing with RTI's low-aqueous solvent

Exp.	Solvent Condition	Solvent Flowrate (LPM)	Air Flowrate (SLPM)	CO ₂ Flowrate (SLPM)	CO₂ Amount (%)	CO ₂ output before cooling (%)	CO ₂ output after cooling (%)	Capture efficiency (%) (before → after)	Fractional Improvement (%)*	Feed temp. (°C)	Average Temp.	
											No- cooling	Cooling
1	Pristine	3.26	510	90	13.8	2.21	0.64	84 → 95.4 (11.4 ↑)	13.5	59	60.7	52.2
2	Pristine	3.26	510	90	14.0	1.95	0.47	86 → 96.6(10.6 ↑)	12.3	52	59.6	50.4
3	Pristine	3.26	510	90	13.8	1.61	0.64	88.3 → 95.4 (7.1 ↑)	8.0	45	58.6	50.0
4	1 st Regen.	3.26	510	90	14.7	3.18	1.57	78.4 → 89.4(11.0 ↑)	14.0	41	54.5	45.3
5	2 nd Regen	3.26	608	107	13.1	3.75	2.23	71.3 → 82.9(11.6 ↑)	16.3	44	55.2	46.8
6	2 nd Regen + DI H ₂ O(5L)	3.26	608	107	13.0	2.94	2.08	77.4 → 84.0(6.6 ↑)	8.5	44	55.4	46.9
7	3rd Regen	3.26	425	75	13.3	1.19	0.67	91.1 → 95.0(3.9 ↑)	4.3	41	52.8	44.9
8	3 rd Regen	2.82	510	90	13.1	2.75	1.75	79.1 → 86.7(7.6 ↑)	9.7	41	53.8	46.6
9	4 th Regen	3.26	353	62	13.3	0.79	0.44	94.0 → 96.6(2.6 ↑)	2.8	41	49.8	39.7
10	4 th Regen	3.65	510	90	12.8	2.16	1.13	83.2 → 91.2(8.0 ↑)	9.7	41	52.7	44.2
11	5 th Regen	2.39	510	90	13.1	5.85	4.71	55.3 → 64.0(8.7 ↑)	15.7	41	52.3	45.5
12	5 th Regen	2.82	510	90	13.0	4.92	3.25	62.2 → 75.0(12.8 ↑)	20.7	41	54.2	46.4
13	6 th Regen	3.26	510	90	13.2	5.74	3.86	56.7 → 70.9(14.2 ↑)	25.1	41	53.5	45.0
14	6 th Regen + DI H ₂ O(5L)	3.26	510	90	13.1	5.33	4.73	59.3 → 63.9(4.6 ↑)	7.8	41	52.1	43.5

CAK RIDGE

8

• Jang, G.G.; Thompson, J.A.; Sun, X.; Tsouris, C. "Process Intensification of CO₂ Capture by Low-Aqueous Solvent," *Chemical Engineering Journal*, **426**, 131240, (2021).

Comparison of MEA and LAS Performance

15% CO₂ 600 LPM/ Solvent flowrate of 3.2 LPM

LAS is more heat-sensitive compared to aqueous MEA

9

• Jang, G.G.; Thompson, J.A.; Sun, X.; Tsouris, C. "Process Intensification of CO₂ Capture by Low-Aqueous Solvent," *Chemical Engineering Journal*, **426**, 131240, (2021).

Technical Approach/Project Scope

- Scale up CO₂ capture rate by a factor of 10 from Column A to Column B
 - Construct Column B
- Scale up intensified device
- Demonstrate enhanced capture by aqueous MEA using intrastage cooling
- Demonstrate enhanced capture by LAS using intrastage cooling
- Demonstrate modularization with one or more packing elements for each module
- Demonstrate smooth operation with variable gas feed flowrate and CO₂ concentration

10 **CAK RIDGE** National Laboratory <u>Motivation:</u> Intrastage cooling with intensified devices may have economic and operational advantages over interstage cooling

Technical Approach/Project Scope Project Schedule: Two-year project

- Task 1.0 Project Management and Planning (1-24 Months)
- Task 2.0 Design Evaluation and Construction of Column B based on Results from FEAA375 (1-12)
 - Modelneeded
- Task 3.0 Advanced Manufacturing and Core Metrics Testing of Intensified Device for Column B (1-15)
- Task 4.0 Using NTRC Engine Combustion Exhaust to Simulate Various Flue Gas Compositions (1-15)
- Task 5.0 Test Plan Development for Subsequent Tasks (13-15)
- Task 6.0 Aqueous Solvent Capture with Simulated Coal-Fired Power Plant Flue Gas (13-16)
- Task 7.0 Aqueous Solvent Capture with Simulated Natural Gas-Fired Power Plant Flue Gas (17-19)
- Task 8.0 Aqueous Solvent Capture under Process Transients (20-21)
- Task 9.0 Column B Modification and Demonstration of Modular Capture with Low-aqueous Solvent (22-24)
- Task 10 Collaboration with CCSI² on Modeling of Process Intensification with Column B Results (1-24)

Progress and Current Status of Project Modeling Framework:

Thompson, Tsouris, "Rate-Based Absorption Modeling for Post-Combustion CO₂ Capture with Additively-Manufactured Structured Packing", *Submitted*.

Modeling Framework

CAK RIDGE

National Laboratory

13

- Chemical & Vapor-Liquid Equilibria with Kent-Eisenberg Equations
- Rate-based model utilizes Wang-Song-Rochelle correlations for mass transfer and Enhancement factor models for reaction
- Model validated with published CO₂ solubility and pilot data

Modeling Framework

MEA

30 wt%

CAK RIDGE

National Laboratory

14

• Chemical & Vapor-Liquid Equilibria with Kent-Eisenberg Equations

- Rate-based model utilizes Wang-Song-Rochelle correlations for mass transfer and Enhancement factor models for reaction
- Model validated with published CO₂ solubility and pilot data

Modeling MEA w/Intrastage Cooling

- Simulation of intrastage cooling with device shows good agreement with experiments from Miramontes *et al*.
 - CO_2 Capture difference all <= 5%
- CO₂ capture improvement and temperature profile agreement suggests modeling framework for heat transfer is accurate in predicting device performance

Modeling Framework Applied to Other Solvents

- In process of extending modeling framework to other solvents
- Speed up evaluation of alternative solvents and how intensified device may improve $\rm CO_2$ capture
- Currently applied to aqueous piperazine (PZ) and a low-aqueous solvent (LAS)

LAS Pilot Data Jang et al., Chem. Eng. J., 2021, Vol. 426, 131240

16

PZ Pilot Data Plaza, Ph.D. Thesis 2012

Location of New Column

17

Process Flow Diagram for Column Design

CAK RIDGE

18

Process flow and equipment is essential to proper design around absorption column

Modular Column Design

Scale-up of Intensified Device from 8" to 12" Diameter

- New unit cell geometry
- Added flanges and hole pattern for system integration
- Added supports for printability

Current Status of Project

- Currently working on Column B construction with significant progress in all supporting subsystems:
 - Column B, including modular sections with packing elements
 - Intensified devices
 - Gas generator and load bank systems
 - Gas conditioning systems for the feed and exhaust gases
 - Gas and solvent delivery systems
 - Solvent storage and regeneration systems
 - Sensors and controls for the column and data acquisition systems

Plans for Future Testing/Development/Commercialization

- Construction of Column B and hydraulic testing expected to be completed by end of Quarter 1 of FY 2022
- Testing with aqueous MEA will be initiated in Quarter 2 of FY 2022
- The geometry of the intensified device, as well as location of intensified devices along the column, are being optimized under a TCF project
- Under the TCF project, a surface coating has been successfully tested to prevent corrosion of the intensified device in aqueous MEA
- The partners on the TCF project including Volunteer Aerospace, RTI International, Oxford PM, and AristoSys are actively engaged and are willing to help toward commercialization

Summary

- Work in all tasks of the project has progressed well so far
- Spending rate has been slow because equipment purchasing has been slow, but it is expected to increase this Quarter
- Quotes for most of the equipment needed have been obtained
- Modeling work has been very helpful for column design
- Efforts toward commercialization are progressing well
- Previous work under FEAA130 and FEAA375 has been published
- Additional manuscripts supported by FEAA384 and the TCF project have been submitted for publication in July of 2021

Publications

- Bolton, S.; Kasturi, A.; Palko, S.; Lai, C.; Love, L.; Parks, J.; Sun, X.; Tsouris, C. "3D Printed Structures for Optimized Carbon Capture Technology in Packed Bed Columns," Sep. Sci. Technol., 54, 2047-2058 (2019). doi.org/10.1080/01496395.2019.1622566.
- Miramontes, E.; Love, L.J.; Lai, C.; Sun, X.; Tsouris, C. Additively Manufactured Packed Bed Device for Process Intensification of CO₂ Absorption and Other Chemical Processes, Chem. Eng. J., 388, 124092, (2020). doi.org/10.1016/j.cej.2020.124092.
- Miramontes, E.; Jiang, E.A.; Love, L.J.; Lai, C.; Sun, X.; Tsouris, C. Process Intensification of CO₂ Absorption Using a 3D Printed Intensified Packing Device, AIChE J. e16285. (2020). doi:10.1002/aic.16285.
- Jang, G.G.; Thompson, J.A.; Sun, X.; Tsouris, C. "Process Intensification of CO₂ Capture by Low-Aqueous Solvent," Chem. Eng. J., 426, 131240, (2021). https://doi.org/10.1016/j.cej.2021.131240.
- Thompson, J.A.; Tsouris, C. "Rate-Based Absorption Modeling for Post-Combustion CO₂ Capture with Additively-Manufactured Structured Packing," Ind. Eng. Chem. Res., submitted, 2021.
- Jang, G.G.; Jun, J.; Su, Y.-F.; Keum, J.K.; DeFelice, V.; Decarmine, T.; Jones, J.; Tsouris, C. "Corrosion Prevention of Additively Manufactured Aluminum Packing Devices Developed for Process Intensification of CO₂ Capture by Aqueous Amines," Ind. Eng. Chem. Res., submitted, 2021.

