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Task 16: Computational Screening of Sorbents 
for Direct Air Capture
• Methodology Development: Machine 

Learning Applied to Flexible Force Field 
Development for Materials Screening 

• Application is Sorbent for Direct Air Capture

NETL R&IC Carbon Capture Field Work Proposal

Outline
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Task 12: Computational Screening of Novel 
Membrane Materials
• Machine Learning applied to computational 

screening/design of membranes
• ML model predicts gas permeability and 

perm-selectivity of polymers
• Application is CO2/N2 membrane separation 

for industry (cement, steel, etc.) 



Screening MOFs for DAC sorbents.
MOFs can exhibit:
• enormous surface area, 
• capacity for high sorption selectivity
In particular, we are developing methods to 
model CO2 adsorption linked to structural 
changes  requires accurate flexible force fields
Force field = model potential, mathematical 
expression governing interaction of the atoms:

Task 16: Computational Screening of Sorbents for Direct Air Capture

Project Overview/Technology Background 
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Metal Organic Frameworks (MOFs) are organic-
inorganic crystalline materials.  There are many 
thousands of MOFs that have been synthesized.   
Due to the wide variety of possible constituents, 
the possible design space of MOFs is enormous. 



Task 16: Computational Screening of Sorbents for Direct Air Capture

Technical Approach/Project Scope
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Fixed-atom Force Fields
• Widely available, used for screenings
• Low accuracy
• Computationally inexpensive
• No flexibility (MOF atoms can’t 

move)

Density Functional Theory (DFT):
• Highly accurate, based on quantum 

mechanics 
• Can describe the flexibility of MOFs
• Computationally time-intensive, 

cannot get statistical averages that 
are needed to calculate sorption of 
gases

Flexible Force Field:
• Computationally inexpensive
• Can be used in atomistic simulations to get 

statistical averages – e.g. can use to obtain 
CO2 sorption on MOFs

• Flexible – can describe movement of MOFs



Task 16: Computational Screening of Sorbents for Direct Air Capture

Technical Approach/Project Scope
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Density Functional 
Theory (DFT) 

calculations on ~8000
selected MOFs 

from the QMOF 
database

QuickFF to generate 
flexible force fields 
(model potential)

NETL-ML-FFF
NETL Machine Learned Flexible Force 

Field

• Obtained by using convolutional 
neural network on the reference 
data

• Can be used to calculate CO2
sorption at low pressure on any 
MOF

• Force field is general, transferable
• Screen unlimited number of MOFs



Task 16: Computational Screening of Sorbents for Direct Air Capture

Progress and Current Status 
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Proof of Concept Results
2275 data points, of which 60% were used 
for training, 20% were used for validation 
and the model was tested on 20% of the 
remaining data. 
The results in figures  are predictions for 
0.2*2275 = 455 MOFs.
Convolutional Neural Network 
implemented in PyTorch
C-O bond (example):
• Kb (Bond Constant)
• Bond length



The objectives of this computational effort are to use: 
• computational database screening
• molecular simulations and machine learning tools  

1. To computationally screen or design novel or previously 
unidentified low technology readiness level (TRL) polymer 
materials with properties that match or exceed the 
performance of the team’s current best performing 
polymers.

2. To create a software tool useful to ourselves and other 
researchers that leverages ML to predict the properties of 
polymers based on an encoding of the repeat unit

Task 12: Computational Screening of Novel Membrane Materials

Project Overview
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Year 1 (EY19): 
 Creation of software tools
 Group contribution methods, functional group 

database.
 Collection of dataset of expt. permeation data

Year 2 (EY20): 
 Dataset correction and augmentation, addition of 

SMILES 
 Creation and refinement of ML model 
 Use of ML model on for screening large collections 

of polymers (SMILES strings)

Year 3 (EY21): 
 Identification/design of promising polymers
 MD and MC-based predictions for promising 

polymer materials
 Completion of software tool and plan for making 

tool available to others. 

Task 12: Computational Screening of Novel Membrane Materials

Technology Background
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6. Synthesis, characterization and testing of 
promising polymers
6. Completion of software tool available to 
others

4b.
Inverse 
design of 
polymers 
using 
machine 
learning

4a.
Screen 
large 
databases 
of 
polymers 

4. Screen / Design 
Existing large databases 
(SMILES) & create hypothetical 



Created a database of experimentally 
measured gas permeation data.  
 We began this database by importing the 

Membrane Society of Australasia (MSA) 
database.   

 Collected original literature sources, 
manually searched for data (time-
consuming) 

 Corrected/verified/added permeability 
values for CO2, CH4, N2, O2, H2, He, CO, Ar, D2
and other gases

 Added new polymers, particularly highly 
permeable polymers

 Encoded simplified molecular-input line-
entry system (SMILES) strings for repeat units 
for each polymer.  

 Database is currently up to ~1670 data sets

Task 12: Computational Screening of Novel Membrane Materials

Technical Approach/Project Scope
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Fit Machine-Learned models (9 models).  
 From SMILES, software creates a polymer 

chain length as specified by the user (we are 
using a “10-mer”)

 Software automatically calculates all 
descriptors 

 190  2D descriptors (depend on the graph of 
the molecule structure, node: atom; edge: 
bond).

 11 3D descriptors (depend on xyz
coordinates for the atoms).   

 5 fingerprints (RDKFingerprint / MACCS / 
AtomPair / Torsion / Morgan)

 ML: Gaussian process regressor used to 
create the ML-models

 Models were fit to predict gas permeability 
for CO2, CH4, N2, O2, H2, He.

 Models to predict gas perm-selectivity for 
CO2/N2, O2/N2, H2/CO2 . 

Polymer Gas Separation Membrane Database, Membrane Society of Australasia, 
https://membrane-australasia.org/ A. W. Thornton, B. D. Freeman and Lloyd M Robeson
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Technical Approach/Project Scope
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Gas 
permeability 
or 
permeability 
selectivity

Total 
number of 
data sets

Training data 
size

Test data 
set

R2 for 
training 
data set

R2 for test 
data set

CO2 986 788 198 0.98 0.90
N2 1068 854 214 0.98 0.90
O2 1065 852 213 0.98 0.91
CH4 887 709 178 0.98 0.92
H2 710 568 142 0.98 0.91
He 574 459 115 0.98 0.92
CO2/N2 981 784 197 0.80 0.76
O2/N2 1064 851 213 0.87 0.79
H2/CO2 629 503 126 0.96 0.81

Detailed Results on the ML-models



We have completed screening of several 
databases, ~million polymers (PolyInfo, 
Notre Dame).
• Our objective was to identify a 

selective layer for a thin film composite: 
• rubbery (not glassy) 
• permeability > 250 Barrer ( ~2500 GPU if 0.1 
μm) 

• selectivity > 30 
• on or above the 2008 Robeson Bound

• A few promising rubbery polymers have 
been identified on the boundary of our 
target region

• For comparison, two NETL-developed 
polymers are labeled; the one in the 
target region is glassy

Task 12: Computational Screening of Novel Membrane Materials

Progress and Current Status 
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PIM-1/MEEP80: 2440 Barrer, α=39 (Sekizkardes J. Mater. Chem. A 2018)
XL MEEP: 610 Barrer, 35 α= (Kusuma et al. ACS App. Mat. Int. 2020)



ML model for the prediction of glassy 
versus rubbery (Tg < 25°C = rubbery)
Gradient Boosting Classifier 

Task 12: Computational Screening of Novel Membrane Materials

Progress and Current Status 
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547 sets of data, 383 training, 164 test
189 2D descriptors 
R2: 0.93 (train) 0.95 (test)



iQSPR (inverse quantitative structure–property 
relationships).
• Not screening, we are designing new 

(hypothetical) structures.
• Makes use of the previously-fit ML model
• Designed about 14 polymers with properties near 

the target region
• We down-selected to 3 rubbery polymers

• 318 Barrer, α = 29
• 278 Barrer, α = 29
• 265 Barrer, α = 29

• MD simulations (results pending) of three polymers 
to confirm:

• CO2 permeability, CO2/N2 perm-selectivity
• Rubbery versus glassy

Task 12: Computational Screening of Novel Membrane Materials

Progress and Current Status 
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Snapshot from molecular dynamics simulation 
to confirm ML-predicted properties of an NETL 
computationally-designed polymer



Software release: “CMLProP” 
• Cheminformatics Machine Learning 

Properties of Polymers
• Github (planned)

• Freeware – source code download by user
• Software functional, distribution possible soon

• Webpage: 
• Prototype page is in testing.
• User inputs SMILES string for their polymer repeat 

unit – (You can use freeware - ChemSketch)

Task 12: Computational Screening of Novel Membrane Materials

Progress and Current Status 
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CMLProP
Welcome to CMLPROP, the 

Cheminformatics Machine Learning 
Properties of Polymers. 

Currently, CMLPROP can predict gas 
permeability, permeability 

selectivity and rubbery/glassy in 
homo-polymers. 

The software tools are developed, 
maintained, updated, and optimized 
by the computational materials and 
carbon capture teams at NETL and 

Battelle. 

Instructions: Input a 
simplified molecular-input 
line-entry system (SMILES) 
for the repeat unit of your 
polymer.  

Input SMILES: 
___________

Permeability Results 
(Barrer):
CO2: _____
CH4: _____ 
N2: _____
O2: _____
H2: _____
He: _____

Perm-selectivity Results:
CO2/N2: _____
O2/N2: _____
H2/CO2: _____

Glass Transition Results:
Rubbery vs Glassy: 
_________

(https://www.acdlabs.com/resources/freeware/chemsketch/index.php)

SMILES string:
Nc1cc(*)cc(O)c1CC*



Software release: “CMLProP” 
• Cheminformatics Machine Learning 

Properties of Polymers
• Github (planned)

• Freeware – source code download by user
• Software functional, distribution possible soon

• Webpage: 
• Prototype page is in testing.
• User inputs SMILES string for their polymer repeat 

unit – (You can use freeware - ChemSketch)
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CMLProP
Welcome to CMLPROP, the 

Cheminformatics Machine Learning 
Properties of Polymers. 

Currently, CMLPROP can predict gas 
permeability, permeability 

selectivity and rubbery/glassy in 
homo-polymers. 

The software tools are developed, 
maintained, updated, and optimized 
by the computational materials and 
carbon capture teams at NETL and 

Battelle. 

Instructions: Input a 
simplified molecular-input 
line-entry system (SMILES) 
for the repeat unit of your 
polymer.  

Input SMILES: 
Nc1cc(*)cc(O)c1CC*
Permeability Results 
(Barrer):
CO2: 4.31
CH4: 0.27
N2:  0.15
O2:  0.72
H2: 14.35
He:  6.47

Perm-selectivity Results:
CO2/N2:  20.7
O2/N2:   4.9
H2/CO2:   3.0

Glass Transition Results:
Rubbery vs Glassy: 
Glassy

(https://www.acdlabs.com/resources/freeware/chemsketch/index.php)

SMILES string:
Nc1cc(*)cc(O)c1CC*



• Publication: Polymer Gas Permeation and 
Rubber/Glass Classification via Machine Learning

• Publication: Inverse Design of Polymers using 
Machine Learning

• Finalize CHEMLProP software, distribute via 
github, webpage

• While the iQSPR successfully designed novel 
polymers, it doesn’t extrapolate well into the 
target region.  

• Variational Autoencoder Method for the design 
of new polymers

• Coverts the discreet data (of our polymer DB) into a 
continuous representation. 

• Continuous representation better suited for interpolation, 
optimization and exploration of polymer space

• Implementation is in progress

Task 12: Computational Screening of Novel Membrane Materials

Future Plans
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R. Gómez-Bombarelli et al. Automatic 
Chemical Design Using a Data-Driven 
Continuous Representation of Molecules. ACS 
Cent. Sci. 2018, 4 (2), 268–276
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