Safeguarding Amines from Oxidation by Enabling Technologies (FE0031861)

Gary T. Rochelle
Texas Carbon Management Program
The University of Texas at Austin

Presented at
DOE Carbon Management and Oil and Gas Research Project Review Meeting
Point Source Capture — Lab, Bench, and Pilot-Scale Research
August 13, 2021
Project Overview

• The project objective is to identify and test promising oxidation mitigation strategies for piperazine (PZ) and other solvents.

• Funding
 • Federal share $2,348,540
 • Cost share $587,058 (PI academic time + TxCMP funds)

• Overall Project Performance Dates
 • BP1: 3/1/2020 – 5/31/2021 (includes 3-month NCTE)
 • Bench-scale
 • BP2: 6/1/2021 – 2/28/2022
 • Bench-scale: HTOR, HGR, ASAP
 • SRP pilot (air/CO₂/0.2 MW)
 • BP3: 3/1/2022 – 2/28/2023
 • Bench-scale
 • NCCC pilot
Three important oxidation mechanisms

1. NO$_2$ oxidizes all amines at 0.2 to 5 ppm in the flue gas
2. Dissolved oxygen oxidizes amines at elevated T before the stripper
3. Fe$^{+3}$ oxidizes amines at stripper T and is regenerated from Fe$^{+2}$ in absorber

Amine selection is an important task of the developers. It will be important as some amines are more resistant to these mechanisms than others.
NO₂: Testing to quantify the effects of NO₂

• Does NO₂ have a catalytic effect on amine oxidation?

• Will incremental oxidation be 1-2 mol/mol NO₂ or 5-10 mol/mol NO₂?
 • More likely to see an effect in absence of other mechanisms, but it probably interacts with other mechanism.
 • More likely to be catalytic at lower NO₂

• Measure oxidation with and without 1-5 ppm NO₂
 • Bench-Scale High gas flow reactor [Baseline experiment completed]
 • absorber conditions missing other mechanisms
 • ASAP (Amine screening apparatus) [Commissioning almost complete]
 • Bench-scale absorber /120°C stripper
 • SRP pilot plant campaign, Fall 2021
 • NCCC pilot plant, summer 2022
NO\textsubscript{2}

High-gas flow reactor (HGF)

- **Pre-saturator**
 - 50 °C
 - 90-100 cc/min
 - 0.8% CO\textsubscript{2} in air

- **HGF**
 - 50 °C
 - 100 cc/min
 - 0-1 ppm NO\textsubscript{2}
 - 4 – 100 ppm NH\textsubscript{3}
 - Froth
 - 0.3 Loaded PZ
 - 500 ml

- **Hot gas FTIR**
 - 180 °C
 - 5 L/min
 - 5.1 L/min

- **50 ppm NO\textsubscript{2} in N\textsubscript{2}**
 - 0 - 10 cc/min
cumulative results 5m PZ from Alfa Aesar (0.3 loading), 50 °C, 0.8% CO₂ in air

Add 380 µmol/kg Fe³⁺

164 hours:

- NH₃ accumulation, formate and iron
 - NH₃
 - Total Formate

- 1.3 µmol/kg-hr
- 153 µmol/kg step change
- 2.1 µmol/kg-hr
- 0.9 µmol/kg-hr

0.7 µmol/kg-hr

Formate

Fe

Fe⁺

0 50 100 150 200 250 300 350

NH₃ accumulation, formate and iron (µmol/kg)

Time (Hours)
cumulative results

5m PZ from Alfa Aesar (0.3 loading), 50 °C, 0.8% CO₂ in air

\[
\text{Stoichiometric relation} \quad \frac{\text{Fe}}{\text{formate}} = \frac{380}{153} \approx 2.5
\]

\[
\text{NH}_3 \quad \frac{\text{formate}}{\text{formate}} = \frac{3.6}{2.1} \approx 1.7
\]

\[
PZ - \text{COH}_2 + 2\text{Fe}^{3+} \rightarrow PZ - \text{COH} + 2\text{Fe}^{2+} + 2\text{H}^+
\]

164 hours:
Add 380 µmol/kg Fe³⁺

153 µmol/kg step change

1.3 µmol/kg-hr

0.9 µmol/kg-hr

0.7 µmol/kg-hr

2.1 µmol/kg-hr
Dissolved Oxygen

• Vary residence time in high T rich line before stripper
 • SRP pilot plant will vary time from <1 s to 40 s [modifications completed]
 • Measure oxygen in product CO₂ at SRP (Fall 2021) and NCCC (Summer 2022)

• Remove DO from rich solvent by N₂ sparging
 • Measure DO in cold rich solvent

• Previous testing in HTOR (High Temperature Oxidation Reactor)
• SRP pilot with N₂ sparging in sump (Fall 2021) [modifications completed]
• NCCC pilot with sparging in sump or new column (Summer 2022)
 • Design of sparging column – preliminary results
N₂ Sparging in HTOR Reduces NH₃ Production

- Start with moderately degraded 4 m PZ solvent
- Cycled from 40 to 150 °C
- Liquid depth of the sparger varied between 5 to 15 cm.
N\textsubscript{2} Sparging Model

- Mass Transfer in Liquid Phase
- \(Z = \text{NTU} \times \text{HTU} \)
- No Back-mixing
- Estimation of \(K_La \) were from experiments with batch liquid by Hikita

\[
\left(\frac{K_La \mu_G}{g} \right) = 14.9 \left(\frac{U_G \mu_L}{\sigma} \right)^{1.76} \left(\frac{\mu_L}{\rho_L \sigma^3} \right)^{-0.248} \left(\frac{\rho_G}{\rho_L} \right)^{0.243} \left(\frac{\mu_L}{\rho_L D_{G/L}} \right)^{-0.604}
\]

N₂ sparger design for NCCC

Liquid Rate: 1.89 kg/s (15000 lb/hr), 40 C, 90% DO Removal, CO₂ Capture Rate = 1.26 mol/s, D = 0.1 m so that liquid velocity is equal to bubble rise velocity

- 10.5 m tall
- N₂ rate = 30 mmol/s
 - = 20 mmol N₂/mol of CO₂ captured
 - = 16 mmol of N₂ / kg of solvent
Fe$^{+2}$/Fe$^{+3}$

• Measure Fe$^{+2}$ and Fe$^{+3}$ solubility as function of degradation [in progress]
• Measure Fe$^{+2}$ and Fe$^{+3}$ in solvent
• Adsorb dissolved Fe on activated C
 • NCCC 2018-19
 • Niederaussem 2021
 • HTOR 2021-22
 • Bench-scale experiments 2021
 • SRP pilot 2021
 • NCCC pilot 2022

• Measure corrosion with PZ solutions: a source of soluble Fe
Fe$^{+2}$/Fe$^{+3}$: Ferrous as an Oxidation Catalyst

- Fe increases the rate of oxidation of many amine solvents
- Work on MEA focused on oxidation in the absorber
- Ferrous can catalyze a free radical reaction between MEA and O$_2$
- Possible reaction pathway for PZ also
- In the absence of O$_2$, Fe still speeds up oxidation. How?
Fe$^{2+}$/Fe$^{3+}$: Iron as an Oxidation Carrier to Degrade PZ in the Stripper

- PZ oxidation occurs at high T in stripper
- Ferrous should oxidize readily in the presence of DO

\[
Fe^{3+} + PZ \rightarrow \text{Products} + Fe^{2+}
\]
Iron Becomes More Soluble as Degradation Products Accumulate

2012 CSIRO Tarong Campaign

- Fe
 - 125 °C
 - 0.11 μmol/kg/hr
 - 155 °C
 - 0.94 μmol/kg/hr
 - $E_a = 100$ kJ/mol

Nielson, 2018
Solubility of FeCl₃ in 5 m PZ at 55°C

Excess FeCl₃ added to PZ solvents
Total dissolved Fe determined by ICP

<table>
<thead>
<tr>
<th>Fe (mmol/kg)</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>2.56</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- HTOR Major Degradation
- NCCC Moderate Degradation
- Artificial Minor Degradation
- NCCC Minor Degradation
- Clean PZ
- HTOR Minor Degradation
Fe^{2+}/Fe^{3+}: C Treating Reduces NH_3 with PZAS at NCCC 2019

NGCC Gas Rate
\sim 8000 \text{ lb/hr}

24-hr NH_3 in water wash gas outlet (ppm)

Operating Hours (hr)

0.106 mmol/kg/hr
0.3 kg PZ/tonne CO_2

* NO concentration relatively stable at 50 ppm
Carbon Bed turned on at 5/14/2019 8:59 (3600 hrs)
Absorbance Change during the Campaign

Operating Hours (hr) vs. Absorbance (A) at 320 nm (UV) and 540 nm (Visible).

- Carbon Bed: Absorbance at 320 nm increases significantly after 3500 hours of operation.
Equilibrium absorbance is linearly related to the carbon loading.

Equation:
\[y = 0.003x + 0.095 \]

\[R^2 = 0.916 \]
Fe removed from NCCC Used Carbon = 3.3 mmol/kg NCCC solvent

At NCCC: 14 canisters of carbon
41 lb carbon/canister
12000 lbs of solvent
→ 3.3 mmol Fe/kg solvent Removed

104.5 mmol Fe/kg carbon
from NCCC used carbon

36.3 mmol Fe/kg carbon
from clean carbon

Fe (mmol/kg)

Batch Number

0 2 4 6 8 10 12
High Temperature Oxidation Reactor (HTOR)

Low Temp Reactor
- Temperature: 50 °C
- Time constant: \(\tau = 1.75 \) min
- Flow rate: 7.5 L/min
- Stream: Sat’d air + 0.5% CO₂

Cross Exchanger
- Flow rate: 200 mL/min
- Pressure: 200 psig

Trim Heater
- Temperature: 150 °C
- Time constant: \(\tau = 1 \) min

FTIR: NH₃ and volatile amines

Total inventory: ~1.6 L

8 min per cycle

Liquid samples: amine loss, degradation products accumulation
(HPLC, Cation & Anion IC, ICP-OES, acid titration, UV-Vis)
NH$_3$ rate from FTIR

The graph shows the NH$_3$ rate (mmol/kg/hr) over operating hours (hr). The graph highlights periods where the carbon bed is on and off, with a notable event labeled "pump down."
Corrosion Method: Low-gas flow reactor

Inlet gas 100 cc/min

Mechanical agitation
L velocity around 0.5~1 m/s

25~75 °C

600 mL
C1010 corrosion & PZ concentration

1.5% CO₂ in air/N₂, 60 °C

Corrosion rate (μm/yr) vs. PZ (m)

- Tarong
- NCCC
- Fresh

CR = 2.4 Cₚᶻ⁻⁰.₆₈

- Corrosion - 1.5% CO₂/air
- Corrosion - 1.5% CO₂/N₂

5 m
<table>
<thead>
<tr>
<th>Modification</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inject and measure NO₂ at 2 ppm</td>
<td>Create baseline oxidation similar to commercial</td>
</tr>
<tr>
<td>N₂ sparging in the absorber sump</td>
<td>Test efficacy of DO stripping</td>
</tr>
<tr>
<td>Increase τ on warm rich bypass from ~1 s to ~40 s</td>
<td>Confirm high-T degradation in rich amine</td>
</tr>
<tr>
<td>Bypass lean amine storage tank</td>
<td>Minimize amine inventory</td>
</tr>
<tr>
<td>Add carbon bed in rich amine line to remove iron</td>
<td>Test impact of removing oxidation catalysts</td>
</tr>
<tr>
<td>Adding O₂ analyzers on recovered CO₂ gas and rich amine</td>
<td>Monitor oxygen presence when perturbing system</td>
</tr>
<tr>
<td>Adding corrosion coupons</td>
<td>Monitor corrosion simultaneous with oxidation</td>
</tr>
</tbody>
</table>
Conclusions on $\text{Fe}^{+2}/\text{Fe}^{+3}$

1. Fe^{+3} solubility in PZ varies solvent degradation from 0.02 to 2 mM
2. C treating reduced ammonia production at NCCC and in HTOR. C treating removed 3 mM of “soluble” iron from NCCC solvent system. All of the “soluble” Fe must be removed to reduce oxidation.
3. C treating removes PZ degradation products that adsorb at 320 & 540 nm
4. >0.01 m PZ protects carbon steel from corrosion at absorber T
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.