

FEW0225: High-efficiency, integrated reactors for sorbents, solvents, and membranes using additive manufacturing NETL Carbon Management and Oil and Gas Research Project Review Meeting August 16, 2021

Du Nguyen

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-825446

Carbon capture, utilization, and storage technologies are driven by a need to improve efficiency

Petra Nova, a joint venture between NRG Energy and JX Nippon Oil & Gas Exploration

Krzemień, A.; Więckol-Ryk, A.; Duda, A.; Koteras, A. Risk Assessment of a Post-Combustion and Amine-Based CO2 Capture Ready Process. *Journal of Sustainable Mining* **2013**, 12 (4), 18–23. <u>https://doi.org/10.7424/jsm130404</u>.

What can advanced manufacturing bring to the table?

We focused on 3 design motifs

Permeable Membrane

Hierarchical flow channels Triply Periodic Minimal Surface structures

Multifunctional Reactors

Goal: More efficient, lower cost reactors for CO₂ capture

	Year 1	Year 2	Year 3	Year 4
Theoretical Assessment	Dov	wnselect		
Fabrication Assessment	🛛 Pro	of of concept reactor		
Generation 1 Reactor		Design→ □	1st-gen design Prototype dem	$0 \rightarrow$
Generation 2 Reactor			Design→ Bench-s	scale test Demo design

- 10 tasks in 3 tracks
- Downselected reactor design
- NCE requested until December 2021 due to COVID
- Tech transfer targeted for middle of Year 4 for 1st-gen design

Many reactor configurations possible with TPMS Heat Exchange and additive manufacturing.

Active projects

Gas Separation Membrane

Printed Composite

Sorbent

Heat

Transfer Fluid

Unclear advantage

Unclear advantage

Membrane Contactor

Conventional packing

solvent

Impermeable Conductive Support

Active projects

Heat exchange packing

Impermeable Conductive Support

Mass transfer simulations inform TPMS reactor design

- Geometric properties
 - Void volume per unit cell
 - Surface area per unit cell
 - Hydraulic diameter
- Flow properties
 - Friction factor
- Mass transfer properties
 - Sherwood number

Periodic boundary conditions in all other directions

Silicone-based membrane reactors explored for

∢Î 1.59 mm

BSD Fu

FSDS 10um s 1

intensified CO₂ absorption

Many reactor configurations possible with TPMS and additive manufacturing. **Heat Exchange**

Active projects

Gas Separation Membrane

Printed Composite

Sorbent

Heat

Transfer Fluid

Unclear advantage

Unclear advantage

Membrane Contactor

Conventional packing

solvent

Impermeable Conductive Support

Active projects

Heat exchange packing

Impermeable Conductive Support

A wide range of TPMS and periodic nodal surface structures exist

Which ones would be the best performing structures?

We have explored the heat transfer characteristics of a wide¹⁰ range of TPMS geometries

Schwarz-D has the best heat transfer performance

We have applied numerical optimization the use of absorbers with integrated heat exchange packings

Depending on the conditions, a heat exchange packing can reduce tower height by ~80%

Intercooled sections can reach close to the numerically optimized results in a variety of configurations

Intercooled sections can reach close to the numerically optimized results in a variety of configurations

Intercooled sections can reach close to the numerically optimized results in a variety of configurations

Can packed towers be improved?

Raschig rings: "Since 1894"

←Process intensification limited by film thickness ... and fabrication technology?

1 mm

Structured packing: "A little better"

3D-printed packings can improve on conventional packings in four ways:

- 1. Improved flow distribution
- 2. Integrated heat exchange
- 3. Enhanced mixing

Several TPMS geometries were successfully 3Dprinted for use as structured packings

Stereolithography

Fused Deposition Modeling

CFD was used to model the performance of the TPMS structured packings

Boundary	Velocity BC	Concentration BC	
Liquid inlet	Uniform velocity	Uniform concentration	
Liquid outlet	Pressure outlet	Zero gradient	
Gas inlet	Fixed pressure	Uniform concentration	
Walls	No slip with contact angle	Zero gradient	

TPMS packings improve liquid distributions and have been computationally simulated

250Y

Schwarz D

TPMS packings improve liquid distributions

All TPMS geometries show improvements, but some are better than others

TPMS packings are predicted to have better liquid distributions and liquid-gas interfacial area

Correlations between performance and geometric parameters are difficult to identify

TPMS geometries with larger unit-cell hydraulic diameters have better liquid distributions

Kg-scale testing and kg-scale production now solved

Gemini apparatus for sorbent testing

30 in

Proteus apparatus for solvent systems

3D printed structured packings enable performance enhancements over conventional packings for CO₂ capture

3D Printed Packing

Conventional Packing

Simulation results predict the Schwarz D geometry to have the best mass transfer rates

- Framework for two-phase mass transport simulations was achieved
 - Capable of both first- and second-order reactions
- Schwarz D, J_sI_{xxx}I_{zx}IP₂IZ, and P₂YSVP₂Y structures are the best performing TPMS geometries
- Relative performance matches with experimental results for Schwarz D, Gyroid, and 250Y

Pressure drops are expected to be higher with TPMS geometries

- Schwarz-D structure have higher predicted pressure drops than 250Y
 - Current wall thicknesses are 1 mm, which may also result in increased
- Current experiments match with modeled results

Conclusions

- TPMS membrane reactors showed promise, but the fabrication process was limited by scalability
- TPMS geometries exhibit high thermal transport properties
 - Within a wide range of geometries, the Schwarz-D structure demonstrated the best performance
- An optimization framework was made for structured packings with integrated heat exchange
- TPMS structured packings exhibited improved liquid distributions and improved performance

Project Team

Du Nguyen, Nathan Ellebracht, Pratanu Roy, Jaisree Iyer, Julie Mancini, Simon Pang, Thomas Moore, Siwei Liang, Samantha Ruelas, Matthew Worthington, William Smith, Joshuah K. Stolaroff

Acknowledgements

Andy Aurelio Mariah Richardson Lynn Brickett This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Prints in multiple materials have been demonstrated

High-Density

Polyethylene

Polycarbonate

ABS

Gyroid

TPMS geometries enhance fluid mixing

Temperature in Cold Fluid in Countercurrent Heat Exchanger

Other design motifs can be added to a TPMS structured packing for improved performance or alternative applications

Gas Absorption Monolith

Permeable Printed Support **Gas Absorption Monolith**

w/ Heat Exchange

Printed Composite Sorbent

Heat Exchange

Impermeable Conductive Support

Gas Liquid Contacting

Permeable Membrane