A Process with Decoupled Absorber Kinetics and Solvent Regeneration through Membrane Dewatering and In-Column Heat Transfer (DE-FE0031604)

Kunlei Liu, Reynolds Frimpong, Brad Irvin, Feng Zhu and Lisa Richburg

University of Kentucky Center for Applied Energy Research

U.S. Department of Energy

National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Objectives

Developing transformative post-combustion CO₂ capture through:

- 1. Enhanced mass transfer via applying 3-D printed two-channel structured packing material to control the absorber temperature profile
- 2. Lower the regeneration energy via
 - Use of rich split-feed with two-phase flow heat exchanger prior to the stripper providing a secondary point of vapor generation
 - Implementing a zeolite membrane dewatering unit capable of >15% dewatering of the carbon-rich solvent prior to the stripper

Project Team and Funding

Background – Absorber Profile

A "temperature bulge" is present near the middle of the column.

Higher temperature will impede additional absorption of CO_2 .

Absorber ID and height will be reduced if the internal temperature is managed.

Background – Advanced Stripping and Secondary Vapor Generation

Temperature (left) and flow (right) conditions inside a stripping column. Towards the top of the column, the temperature will rise and significant energy will be expended to vaporize water (lower CO_2/H_2O ratio).

Project Approach

- Use of 3D printing to implement heat transfer channels into the packing material, providing cooling (>150 W on the UK CAER small bench unit) without need for both packing and intercooling sections.
- 2. Use of a secondary entry point between two packing sections in the stripper with a high-end heat exchanger (using the lean amine stream).
- Achieving >100 m²/m³ of membranes for a dewatering module, lowering the footprint/volume of the dewatering process while demonstrating fluxes of >10 kg/m²/h to decrease membrane area/cost.

Project Task Schedule and Success Criteria

Task	Title	Year 1	Year 2	Year 3
1	Project Management and Planning			
2	3-D Printed Packing Material for Absorber			
	Zeolite Dewatering Module Development and			
3	Fabrication			
4	30 L/min CO2 Capture Bench Unit Evaluation			
5	Test Plan Development			
	Evaluation of Proposed Technique at 0.1 MWth			
6	Post Combustion CO2 Capture Facility			
	High Packing Density and Performance Zeolite Y			
7	Membranes			
	Composite Zeolite and Alternative Dewatering			
8	Membrane			
9	Techno-Economic Analysis			
10	Topical Report Preparation and Submission			

Decision Point	Success Criteria
Budget Period 1	1. Peak Absorber Temperature Reduced by >10 °C Confirmed
	2. Zeolite Y Membranes with Fluxes >10 kg/m ² /h at Rejection Rates >90%
	3. Dewatering Zeolite Y Module Design Complete with >200 m ² /m ³
	4. Test Plan Complete for 0.1 MWth Capture Unit
Budget Period 2	1. Stripper Heat Int. >10% Energy Savings on 0.1 MWth Capture Unit confirmed
	2. Long-Term Energy Savings of >15% from 1000-hour Process Study completed
	3. Dewatering Membrane Packing Density Increase to >400 m ² /m ³ achieved
	4. Aspen Model for Entire Integrated System constructed and preliminary H&MB
	stream tables generated
	5. TEA Complete for Integrated Process
	6. EH&S Assessment Complete for Integrated Process
	7. Updated State Point Data Table for Membrane
	8 Technology Gan Analysis Complete

Progress and Current Status: 4" Bench Unit (Absorber Temperature Profile)

Progress and Current Status: 4" Bench Unit (Split Feed to Stripper)

Split ratios varied from 20-40% experimentally to assess optimal performance

Heat recovery lowered stripper top temperature by about 12 $^{\circ}\text{C}$

$$Q_{total} = Q_{des} + Q_{sen} + Q_{strip} - \frac{P_{CO2}}{P_{H2O}}$$

Progress and Current Status: 4" Bench Unit(Split Feed – Energy)

Stripper Pressure	Split Flow (%)	% Capture	Stripper Bottom Temp (°C)	Stripper Top Temp (°C)	H ₂ O/ CO ₂ Ratio	Lean C/N	Rich C/N	Energy Btu/lb CO ₂
	0	63	121	104	1.30	0.33	0.43	1449
30	20	74	122	95	0.69	0.27	0.43	1201
Psia	30	72	122	92	0.58	0.31	0.46	1152
	40	70	118	91	0.54	0.31	0.47	1186
	0	68	117	99	1.45	0.28	0.39	1268
24	20	64	116	95	1.05	0.29	0.39	1322
	20	74	117	93	0.90	0.28	0.40	1181
psia	20	69	116	91	0.79	0.27	0.41	1080

- Energy savings of ~ 15% obtained with split flow to the stripper @ low C/N in the rich solution
- Expected higher energy saving when applied to large unit with rich carbon loading around 0.5 C/N

Progress and Current Status: 4" Bench Unit (Long Term Performance)

Condition: 20% split feed ratio, 24 psia stripper pressure

Sustained solvent performance (capture and cyclic capacity) over extended run period

Energy savings demonstrated over long term operation

Progress and Current Status: Zeolite Membrane

Fabrication of Zeolite Y membrane modules by Media & Process Technology

	Test	Test	Feed Water	Water	iPA
Bundle ID	Temperature (°C)	Pressure (psig)	Content (wt%)	Flux (kg/m ² /hr)	Rejection (%)
Bundle C-02	88	20	30	0.33	98.5
Bundle C-03	88	20	28	0.38	97.8
Bundle C-07	88	23	25	0.44	99.4
Bundle C-08	88	22	25	0.41	98.3
Bundle C-09	88	22	25	0.43	99.2
Bundle C-10	88	22	27	0.51	99.1

*Feed solution: isopropanol/water mixture

Progress and Current Status: Zeolite Membrane

Membrane modification by WS2 to fix the intercrystal boundary

Materials: WS₂ powders (99%, size~ 90 nm), 2-propanol (IPA, 99%), concentration 0.2 g/L

Process Simulation and TEA

Process model tuning for techno-economic analysis of scaled technology

ABS

Primary STP

Future Testing

Summary

- Heat recovery from split streams cooled stripper exhaust stream by ~12 °C, less water evaporation resulted in energy savings of ~15%
- Demonstrated sustained long term performance of solvent in terms of capture and solvent capacity for select conditions
- Pump around increases liquid turbulence, enhances gassolid contact and reduces diffusion limitation to enhance capture efficiency

Acknowledgement

- **U.S. DOE NETL:** David Lang, José Figueroa, Dan Hancu and Lynn Brickett
- LLNL: Du Thai Nguyen
- MPT: Doug Parsley, Rich Ciora and Amy Chen
- Trimeric: Andrew Sexton and Darshan Sachde
- ALL4: Clay Whitney
- UK CAER: Power Gen group

Appendix: Organization Chart

Appendix: Project Gantt Chart

ID	Task Name	Start	Finish	2019 2020 2021
				Qtr 2Qtr 3Qtr 4Qtr 1Qtr 2Qtr 3Qtr 4Qtr 1Qtr 2Qtr 3Qtr 4Qtr 1Qtr 2Qtr 3Qtr 4
1	1 Project Management and Planning	5/1/18	10/31/21	
8	2 3-D Printed Packing Material for Absorber	5/1/18	5/1/19	
9	2.1 Identification of Additive Manufacturing Compatible Heat Transfer Materials	5/1/18	7/31/18	
10	2.2 Design and Fabrication of Packing Material using Additive Manufacturing	8/1/18	3/5/19	
11	2.3 Manufacturer Identification and Technology Transfer	3/5/19	4/30/19	
13	3 Zeolite Dewatering Module Development and Fabrication	5/1/18	4/30/19	
14	3.1 Membrane Synthesis Optimization	5/1/18	10/31/18	
16	3.2 Large-batch Synthesis of Zeolite Y Membranes	11/1/18	4/30/19	
17	3.3 Design of Membrane Module	10/31/18	4/30/19	
19	4 30 L/min CO2 Capture Bench Unit Evaluation	1/31/19	10/31/19	
20	4.1 Advanced Structured Packing Study	1/31/19	7/2/19	
21	4.2 Integration and Testing of Zeolite Y Module	7/1/19	8/29/19	i i i i i i i i i i i i i i i i i i i
22	4.3 Possible Modification/Improvement Identification	9/2/19	10/31/19	ň
24	5 Test Plan Development	7/1/19	10/31/19	
26	6 Evaluation of Proposed Technique at 0.1 MWth Post-Combustion CO2 Capture Facility	11/1/19	10/31/21	
27	6.1 Stripper and Auxiliary Facility Modification and Retrofit	11/1/19	2/2/20	
28	6.2 Packing Design Update and Acquisition of Packing	11/1/19	2/2/20	
29	6.3 Fabrication of Zeolite Y Membrane Module	11/1/19	4/30/21	
30	6.4 Installation and Verification Studies of Advanced Packing Material	2/3/20	10/31/20	ř
31	6.5 Installation and Verification Studies of Zeolite Y Membrane Module	5/1/21	10/31/21	×
33	6.6 1000-hour Long-term Operation	5/1/20	10/31/21	* <u> </u>
35	7 High Packing Density and Performance Zeolite Y Membrane	10/31/19	7/31/20	
37	8 Composite Zeolite and Alternative Dewatering Membranes	7/31/20	1/31/21	ř
39	9 Techno-Economic Analysis	10/30/20	10/31/21	
40	9.1 Modeling	10/30/20	9/2/21	r1)
41	9.1.1 Aspen Model. A detailed Aspen Plus model will be carried out on the entire hybrid system to confirm process component benefits.	8/2/21	8/2/21	◆ 8/2
42	9.2 Techno-economic Analysis	4/2/21	10/31/21	· · · · · · · · · · · · · · · · · · ·
43	9.2.1 TEA complete	10/31/21	10/31/21	10/31 🔷
44	10 Topical Report Preparation and Submission	5/4/21	10/31/21	
45	10.1 State Point Data Table	5/4/21	10/31/21	
46	10.1.1 State Point Data Table complete	10/31/21	10/31/21	10/31 🔷
47	10.2 Technology Gap Analysis	5/4/21	10/31/21	
48	10.2.1 TGA complete	10/31/21	10/31/21	10/31 🔷
49	10.3 Environmental, Health, and Safety (EH&S) Assessment	5/4/21	10/31/21	
50	10.3.1 EH&S complete	10/31/21	10/31/21	10/31 💊