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Executive Summary

> Variable renewable energy (VRE) is changing how electric grids operate

> The design and operations of CCS-equipped power plants should be
reconsidered

> ARPA-E is funding FLECCS, a $45 million program, to (1) design and
optimize systems and (2) build small prototypes

> Currently in Phase 1; moving to Phase 2 Spring 2022
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MOTIVATION FOR FLEXIBLE CCS
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Electric power systems are changing — capacity factor
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Electric power systems are changing — ramping
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CapEx and OpEXx tradeoffs
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CapEx and OpEXx tradeoffs
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THE FLECCS PROGRAM
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FLECCS: finding the optimal role of CCS

> Context: a net-zero carbon energy system with $100-300/t carbon prices (high
enough for DAC to clear the market)

> Simulate electricity pricing conditions on a high-VRE grid: locational marginal
prices (LMPs)

> Optimize the net present value of a CCS-equipped plant given these economic
Inputs

> Use capacity expansion and production cost models to assess value of a given
flexible CCS approach
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Interactions between grid modeling and tech development
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ELECTRICITY SYSTEM CCS TECHNOLOGY
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FLECCS technology teams

Flexible solvents,
sorbents, membranes
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Flexibility via thermal or
chemical storage
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Potential solution: load-following CCS
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Description of Technology and Strategy for NPV Optimization

Description of Technology

» Structured solid adsorbents with very high surface areas
and low pressure drop

* 60-second cycle times

» Fast startup and shutdown as well as fast cycle allow CCS
plant to follow power plant operation

* Actual NGCC power plant data from LADWP for model
validation

max NPV = Z
du

/

z LMP; x Powery

* LMP signal from ARPA-E

wsf (Revenue — Capital Cost — Operating Cost)

TSA(design variables) +
CO, compression (design variables)

» Capital costs only for capture system

Susteon

Strategy for NPV Optimization

« Clustering algorithms to sort LMP data into representative days
« CAPEX and OPEX correlations

» ldentify decision variables — design and operating variables

» Solve for best design given identified scenarios (i.e. different
LMP clusters)

d — design (stage 1)variable
u — operating (stage 2)variable
ws; — weight for scenario s

NGCC (operating variables) +
TSA (operating variables)
+ CO, compression(operating variables)

» Operating cost for NGCC and capture

» Scenarios will be considered + Capital cost for modifications (steam system
independently extraction)
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Carbon Capture Technology for Fossil Power Plants Susteon

Svante CO, Capture System
(Exploded View)
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» Using novel structured adsorbents with fast
TSA cycles for quick start/stop/turndown
and load following

» CO, capture process and compression
models integrated with power plant models

» Validation of process models using plant
operating data and NPV optimization
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Potential solution: storage as a buffer
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CSU: pumped thermal storage integration

« Energy storage/utilization at
low/high demand

« Enables NGCC capacity factor
optimization while capturing 95%
CO,

ION Flexible
Carbon Capture (at TCM)
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GRC

Concept

1#2-month, $900,000 project to model a low-cost, flexible

Project Team
GE Research

oxy-combustion power plant with carbon capture

Program Objective: Model the highest NPV for an integrated oxy-combustion

Expert in power plant plant given the pricing information and CO, cost of $100, $200, and $300/t CO, , .
design, simulation, and from ARPA-E. Project Deliverables
economic analysis Power cycle

Plant performance and cost

From Pipeline information for the capacity
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Figure 1. Summary of the proposed Flexible Oxy-fuel Combustion for High-Penetration
Variable Renewables project.
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GRC

Early dispatch modeling ... idealized

Idealized dispatch ... On/off based on marginal cost only
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Potential solution: direct air capture integration
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FLECCS Concept: integrate plant flue gas CO,
capture with lime-based direct air capture (DAC)
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About the process

Implements patent-pending technologies from 8 Rivers
- Lime-based direct air capture (DAC)
- Calciner and carbonator process (Carbon8)

Key features:

- High (>30 vol%) CO, concentration of calciner
exhaust makes electricity-based downstream
separation/purification practical

- Potential for net negative emissions power
generation

- Process does not impact power plant flexibility




Flexible operation and optimization strategy

Flexibility enablers

CO, separation system is electrically-driven and not
thermally integrated with the power plant

Units still operate at reduced or zero power plant
loadings

» Process adjusts to varying flue gas (e.g.,CaCO; feed is
varied)

* Fresh CaCOQO; calcined, producing CaO for DAC and a CO,
rich stream for separation and sequestration

* Process units operate even when power plant is idle

Optimization Strategy (MIT)

Detailed steady-state process simulation
Vary power plant loading levels; identify key design
variables

Dynamic modeling
Identify ramp rate constraints; assess impact of equipment
size on transient behavior

Reduced order models

Computationally efficient surrogate models to characterize
unit ops

Costing
Size and cost the plant using Aspen economic analyzer
supplemented with vendor info

Integrated design and optimization
Optimize design and operation of power plant concept
to maximize NPV for different electricity and CO, price
scenarios
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A timeline of FLECCS Phase 1

Note: broad distribution of project start times (for some, 2020)

Model, Initial System First analysis Phase 2
S costing models by modeling Decisions
tart T2M plan : i
methodology validated €ams

Feb. May Aug. Nov. Feb. May

<€ 2021 ><€ 2022 >
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Summary

> The design and operations CCS-equipped power plants should be reconsidered in
light of increasing VRE penetrations

> Electricity system models can help quantify value
> We have hypotheses as to CCS systems that add value, but must quantify

> FLECCS is a two-phase program to identify most promising concepts and start
building prototypes
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