

The ARPA-E FLECCS Program

Designing CCS processes for future energy systems

Scott Litzelman, Ph.D. Advanced Research Projects Agency-Energy (ARPA-E)

- Variable renewable energy (VRE) is changing how electric grids operate
- The design and operations of CCS-equipped power plants should be reconsidered
- ARPA-E is funding FLECCS, a \$45 million program, to (1) design and optimize systems and (2) build small prototypes
- Currently in Phase 1; moving to Phase 2 Spring 2022

MOTIVATION FOR FLEXIBLE CCS

Electric power systems are changing – capacity factor

Electric power systems are changing – ramping

CapEx and OpEx tradeoffs

Data from NETL Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity, Rev. 3 (2015)

CapEx and OpEx tradeoffs

Data from NETL Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity, Rev. 3 (2015)

THE FLECCS PROGRAM

FLECCS: finding the optimal role of CCS

- Context: a net-zero carbon energy system with \$100-300/t carbon prices (high enough for DAC to clear the market)
- Simulate electricity pricing conditions on a high-VRE grid: locational marginal prices (LMPs)
- Optimize the net present value of a CCS-equipped plant given these economic inputs
- Use capacity expansion and production cost models to assess value of a given flexible CCS approach

Interactions between grid modeling and tech development

Example of electricity pricing projections

FLECCS technology teams

Flexible solvents, sorbents, membranes

Flexibility via thermal or chemical storage

Flexibility via DAC integration

8 RIVERS 8 Rivers Capital, LLC

Potential solution: load-following CCS

Description of Technology and Strategy for NPV Optimization Susteen

Description of Technology

- Structured solid adsorbents with very high surface areas and low pressure drop
- 60-second cycle times
- Fast startup and shutdown as well as fast cycle allow CCS plant to follow power plant operation
- Actual NGCC power plant data from LADWP for model validation

Strategy for NPV Optimization

- Clustering algorithms to sort LMP data into representative days
- CAPEX and OPEX correlations
- Identify decision variables design and operating variables
- Solve for best design given identified scenarios (i.e. different LMP clusters)

Carbon Capture Technology for Fossil Power Plants

- Using novel structured adsorbents with fast TSA cycles for quick start/stop/turndown and load following
- CO₂ capture process and compression models integrated with power plant models
- Validation of process models using plant operating data and NPV optimization

Project Goals

Metric	SOA	Goal
CCS Plant Technology	Cansolv	Fast Cycle TSA
CCS System Capital Cost	\$779/kW	\$549/kW
Cost of CO ₂ captured	\$82/Tonne	\$48/Tonne
Flexibility Enabler	Not Flexible	High turndown ratio, fast cycle time

VATIONAL

TECHNOLOGY LABORATORY

Susteon

Potential solution: storage as a buffer

CSU: pumped thermal storage integration

CHANGING WHAT'S POSSIBLE

Concept

15 z-month, \$900,000 project to model a low-cost, flexible Project Team oxy-combustion power plant with carbon capture **GE Research** Program Objective: Model the highest NPV for an integrated oxy-combustion plant given the pricing information and CO₂ cost of \$100, \$200, and \$300/t CO₂ Expert in power plant from ARPA-E. design, simulation, and economic analysis Power cycle XXXX 8 RIVERS From Pipeline + **8 Rivers Services** Expert in oxy-combustion power plants NG Storage Legend CO₂ Storage Ogygen Natural gas -> CO. From Grid Electricity Heat GE Research has designed Air Separation Unit **Technical Approach** Determine what policies and investments

Relevant Prior Work

numerous gas turbines and developed complex optimization scenarios for power plants. 8 Rivers has developed and piloted a 50MWt oxy-combustion plant with carbon capture.

need to be implemented to drive investment by industry in flexible carbon capture. Develop a thermodynamic and economic model of the integrated plant.

Technical Challenges

Optimize the NPV of the plant by varying design and operational parameters.

Project Deliverables

Plant performance and cost information for the capacity expansion model, with the goal of getting as close to the DOE aggressive target of LCOE of \$75/MWh.

Project Benefits

To Pipeline

This technology has the potential to provide the flexibility of a gas plant with near-zero CO2 emissions. The combination of tight thermal integration across the plant and gas buffering will allow this oxy-fueled system to provide flexible, near-zero CO₂ electricity, at a competitive price.

Figure 1. Summary of the proposed Flexible Oxy-fuel Combustion for High-Penetration Variable Renewables project.

ARPA-E FLECCS 2Q presentation

"The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001304. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Early dispatch modeling ... idealized

Although CF's varies from 32% to 88% ... profit potential closer

ARPA-E FLECCS 2Q presentation

"The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001304. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

August 5, 2021

Potential solution: direct air capture integration

FLECCS Concept: integrate plant flue gas CO₂ capture with lime-based direct air capture (DAC)

RIVERS

The Team

MITel

Howard Herzog, Dharik Mallapragada, Emre Gençer, Edward Graham, Moataz Sheha

8 RIVERS

Philip Cross, James Custer, Adam Goff, Ian Cormier

About the process

Implements patent-pending technologies from 8 Rivers

- Lime-based direct air capture (DAC)
- Calciner and carbonator process (Carbon8)

Key features:

- High (>30 vol%) CO₂ concentration of calciner exhaust makes electricity-based downstream separation/purification practical
- Potential for net negative emissions power generation
- Process does not impact power plant flexibility

Flexible operation and optimization strategy

Flexibility enablers

CO₂ separation system is electrically-driven and not thermally integrated with the power plant

Units still operate at reduced or zero power plant loadings

- Process adjusts to varying flue gas (e.g.,CaCO₃ feed is varied)
- Fresh CaCO₃ calcined, producing CaO for DAC and a CO₂ rich stream for separation and sequestration
- Process units operate even when power plant is idle

Optimization Strategy (MIT)

Detailed steady-state process simulation

Vary power plant loading levels; identify key design variables

Dynamic modeling

Identify ramp rate constraints; assess impact of equipment size on transient behavior

Reduced order models

Computationally efficient surrogate models to characterize unit ops

Costing

Size and cost the plant using Aspen economic analyzer supplemented with vendor info

Integrated design and optimization

Optimize design and operation of power plant concept to maximize NPV for different electricity and CO₂ price scenarios

A timeline of FLECCS Phase 1

Note: broad distribution of project start times (for some, 2020)

Summary

- The design and operations CCS-equipped power plants should be reconsidered in light of increasing VRE penetrations
- Electricity system models can help quantify value
- We have hypotheses as to CCS systems that add value, but must quantify
- FLECCS is a two-phase program to identify most promising concepts and start building prototypes

Acknowledgements

Programmatic Support

Alexis Amos Erin Gilley Tech-to-Market Max Tuttman

Technical Support

Elena Chung

Maruthi Devarakonda

Ray Duthu

Max Lyubovsky

