SRI International

Project Review (FE0031633)

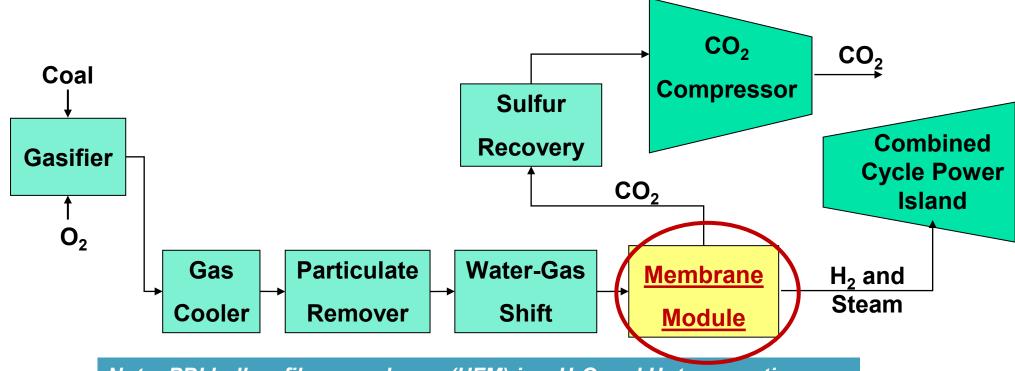
Development and Testing of a High Temperature PBI Hollow-Fiber

Membrane Technology for Pre-Combustion CO₂ Capture

Presented by Indira Jayaweera and Michael Wales
Integrated Systems and Solutions (InSyS) Division
SRI International

Project Team

Enerfex, Inc.

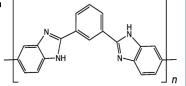

Disclaimer

This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Technology Background and Previous Projects

Membranes for Pre-Combustion CO₂ Capture

Advantages of High-Temperature Membranes for Separation of CO₂

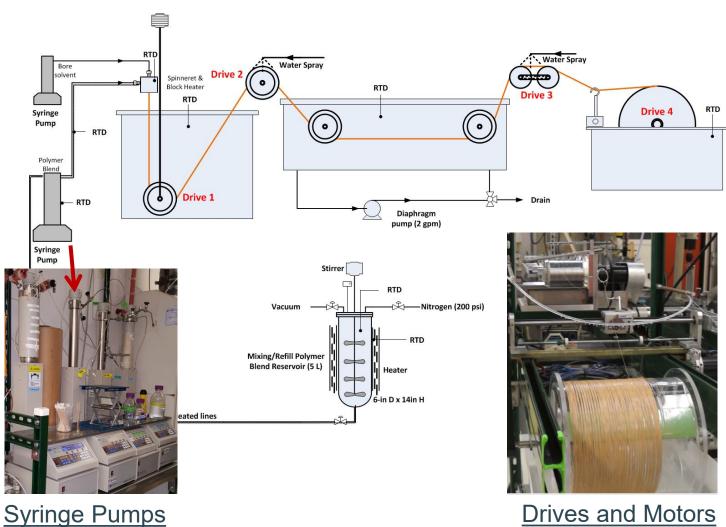

Note: PBI hollow fiber membrane (HFM) is a H2O and H2 transporting

Characteristics of PBI Membranes

- Thermally stable up to ~ 300°C and sulfur tolerant
- Tested up to 225°C with simulated gases and with real syngas
- Attractive combination of throughput (permeance) and separation (selectivity)

Advantages of Membrane-Based Separation

- Reduced costs for syngas cooling
- Reduced CO₂ compression costs
- Emission free, i.e., no solvents
- Decreased capital costs
- Low maintenance
- Modular



m-Polybenzimidazole (m-PBI)

ational

SRI Fiber Spinning Lines

1st line installed in 2015 2nd line installed in 2019

Drives and Motors

Fiber Optimization:

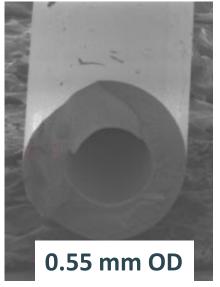
- Air gap
- Solvents
- Non-solvents
- Roller speed

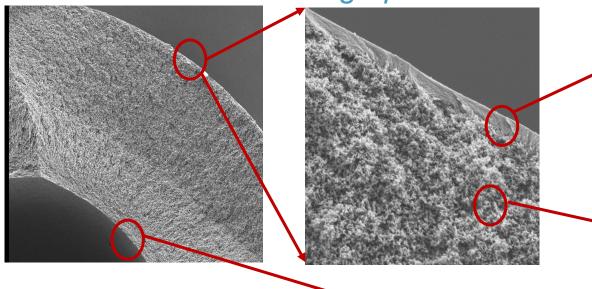
Wall thickness

Pore size

Substructure

Dense layer thickness


Variety of Applications:


- Gas Separations¹
- Reverse Osmosis (RO)²
- Ultra Filtrations (UF)³

- 1. Xiao et al. (2018), Membranes, 2018, 8(4), 113;
- 2. Wales et al. (2021), Membranes, 2021, 11(6), 430;
- 3. Xiao et al. (2021), Desal and Water Treatment, 2021, 69-78, 229

Fabrication of Fibers with Good Reproducibility

Quality Control is the KEY to success when scaling up

SRI Fiber Production – VERY GOOD REPRODUCIBILITY:

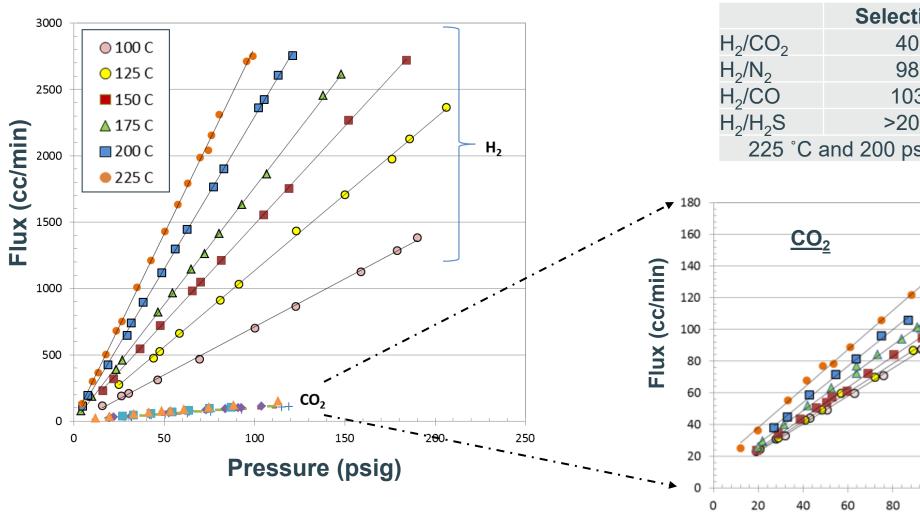
- Dense (skin) Layer: 0.3 0.5 µm
- OD: 450 650 µm
- ID: 120 250 µm
- Spun > 500 km

Tunable

Achievements:

- Dense-layer thickness reduced from 1 μm to < 0.3 μm (Gen-1)
- Fiber diameter reduced from 1 mm to less than 600 μm

Gen-2:


- 0.5 µm dense layer
- Reduce defect, improve reproducibility

≈ 0.5 µm skin

Porous support

lumen surface

PBI H₂/CO₂ Selectivity Increases with Temperature and **Pressure**

Mixed Gases

	Selectivity			
H ₂ /CO ₂	40			
H_2/N_2	98			
H ₂ /CO	103			
H_2/H_2S	>200			
225 °C and 200 psi ΔP				

Pressure (psig)

Critical Asset: Membrane Testing Skid

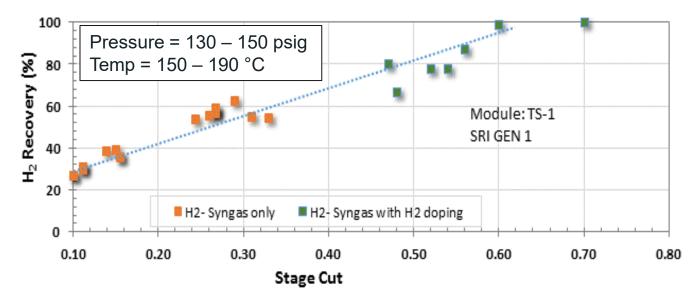
Field Tested at the National Carbon Capture Center (NCCC)

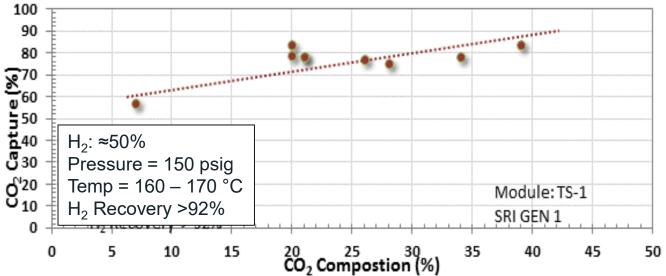
5,000 fibers (5 m²) arranged for potting

Skid installed at the NCCC (April 2017)

4-inch modules (~5,000 fibers)

50 Kilowatt-Thermal Demonstration:

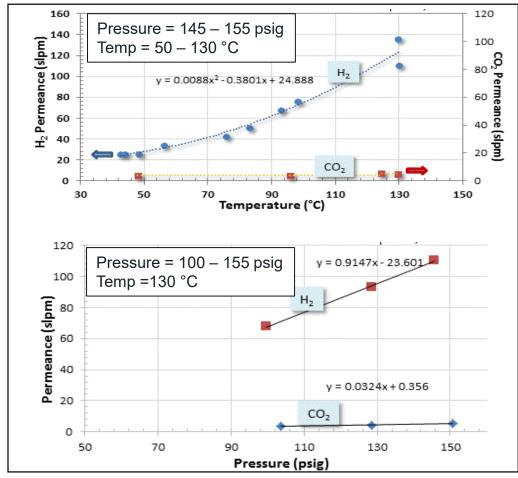

- PBI membrane skid transferred to NCCC in March 2017
- Tested in April 2017 (>600 hours)
- Returned to SRI in March 2018
- Used in current work (with upgrading)

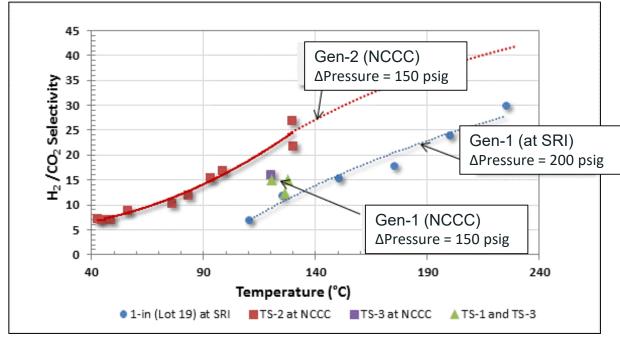

Results from NCCC Field Test

Air-Blown Gasifier

Sample parametric matrix

Test Parameter	Range	Unit
Temperature	80 – 215	°C
Pressure	50 – 170	psig
Gas composition	Variable	slpm
Stage cut	0.2 - 0.7	
H ₂ in syngas	12 – 50	%
CO ₂ in syngas	5 – 40	%

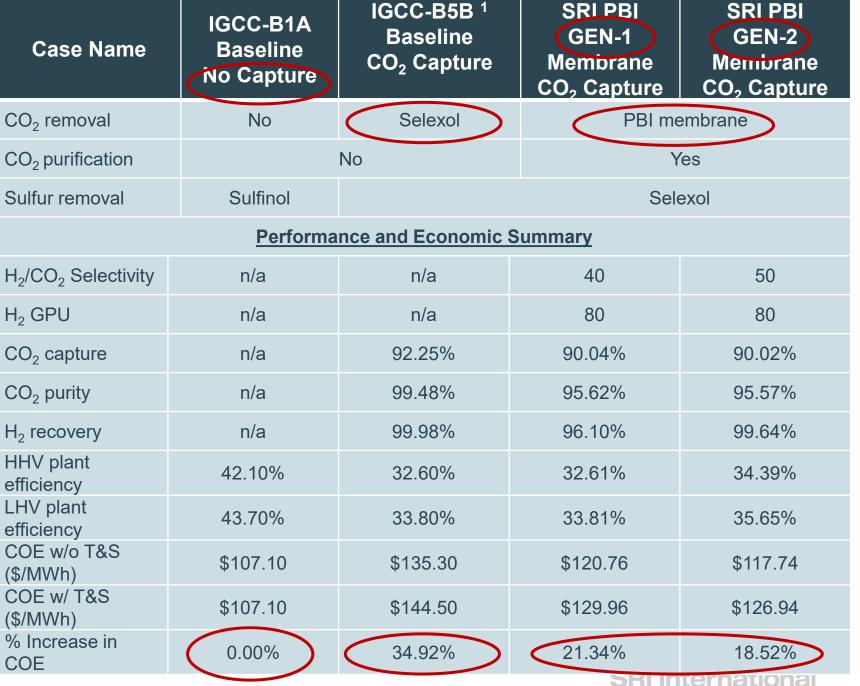



600 Hours of Data Collected

Gen-2 Results from NCCC Field Test

Air-Blown Gasifier

H₂ and CO₂ permeances as a function of temperature (top), function of pressure (bottom)



Gen-1 and Gen-2 selectivities as a function of pressure

Selectivity of PBI Gen-2 > PBI Gen-1:

- Gen-2 has better selectivity than Gen-1
 40 compared to 25
- Gen-1 has higher flux (150 GPU compared to 100 GPU
- Selectivity is more important than Flux (TEA)

[%] Increase in Cost of Electricity (COE)

[11]

[1] Cost and Performance Baseline for Fossil Energy Plants Volume 1b: Revision 2b, July 31, 2015

Current Project Details

Objectives

<u>Demonstrate that Gen-2 PBI based HFM provide a pathway to achieve DOE's pre-combustion capture targets</u>:

- Targets: 90% CO₂ capture and 95% purity
 - >99% H₂ recovery
 - 30% reduction in COE
- Field test 50 kWth fiber skid
- University of Kentucky Center for Applied Energy Research (UK-CAER), Oxygen Blown Gasifier
- Techno-Economic Analysis from field data

Leverage assets, technology, and knowledge from previous projects:

- Spin 100 km of SRI PBI fibers
- Improved potting and module construction
- Modifications/improvements to fiber skid

Project Budget and Team for DE-FE0031633

Cooperative agreement grant with U.S. DOE Period of Performance:

• BP1: 10-1-2018 to 03-31-20

BP2: 04-01-20 to 09-30-21

Funding:

U.S. Department of Energy: \$2.007 million

Cost share: \$0.505 million (20.1%)

Total: \$2.512 million

NETL Project Manager:

Krista Hill

Andrew Jones (former)

NETL

Funding and technology oversight

SRI

- Gen-2 PBI membrane Spinning
- Module fabrication
- Skid installation & testing

PBI Performance Products, Inc.

PBI Dope and industry perspective

Enerfex, Inc.

 Membrane system modeling and Techno-economic analysis

Energy Commercialization

Commercialization analysis

UKy CAER

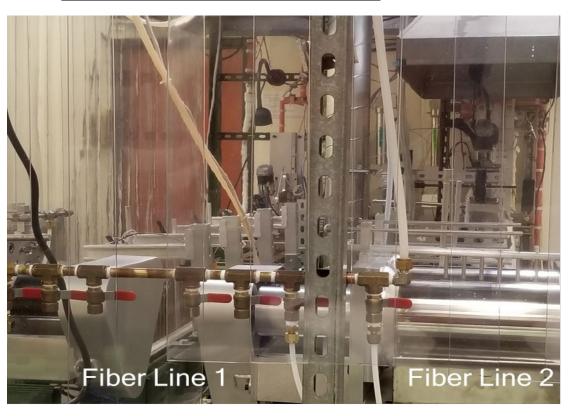
· Gasifier facility test site

Project Objectives and Tasks

Budget Period 1 (10-01-2018 → 03-31-2020)

Task #	BP	Task	Status
1	1	Project Management and Planning	Completed
1	1	Preliminary Technology Maturation Plan Program Management Plan Preliminary TEA	Completed
1	1	Installation of Partner Agreements and Sub-awards	Completed
2	1	 Modification of the 50 kWth Test Unit Refurbish and upgrading of the existing skid system Fabrication of 100 km of SRI PBI Fibers Module design and installation of the Modules (4 to 6-in diameter) Membrane performance testing at SRI HAZOP and PI&D Review at UK-CAER 	Competed
3	1	Modeling - Modeling of the Module arrangement - Modeling of the skid performance - Preliminary TEA	Completed

Project Objectives and Tasks


Budget Period 2 (04-01-2020 → 09-30-2021)

Task #	BP	Task	Status
4	2	Operation of the Test Unit at a Field - Skid Transport and Installation at the Site - Development of a test plan - Operation of the skid and data collection - Analysis of the data form the skid	Started
5	2	 EH&S, TEA and other Related Reports - Techno-Economic Analysis - Update the State Point Data Table - Technology Gap Analysis - Preparation of Technology Maturation Plan - Environmental Health and Safety Assessment (EH&S) 	Not Started (Post-UK CAER)
6	2	Skid Decommissioning - Skid decommissioning and Transport - Skid Postmortem and Storage	Not Started (Post-UK CAER)

2nd Spinning Line Installed in 2019

Budget Period 1

New = Fiber Line 2 (right):

Spin 150 km of fibers (BP-1):

Fiber Skid Modifications/Improvements

Budget Period 1

Refurbished existing Skid:

Fiber Skid Modifications/Improvements

Budget Period 1 – Ensure maximum up-time at UK-CAER (max data collection)

Converted 2x existing modules:

- ~6.5 m² each
- Only need to replace damaged cartridge
- Faster replacement than repairing the 4-inch bundle

4-inch

19x modular

Installed 2x new modules:

- ~4 m² each
- Faster module swapping than converted modules
- Reduce gas bypass
- Designed to allow sweep gas

2x-new modules

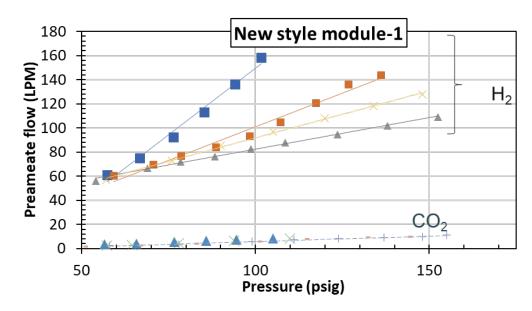
19x modular SF

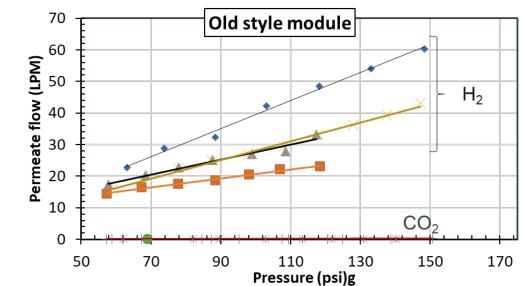
SRI International

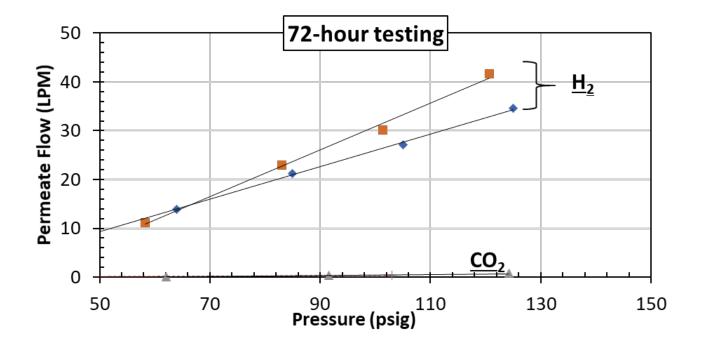
Fiber Spinning and Potting

Budget Period 1 & 2

Spin 150 km of fibers (BP-1)


Potted 160+ cartridges (old + new style), BP-1&2





Skid Acceptance Testing

Budget Period 2

Performance meets expectations:

• Selectivity: 19 – 50

GPUs: 130 (150 °C)

Up to 72 hours of testing

Skid Acceptance Testing

Budget Period 2

Summary:

- Over 150 hours of Skid testing at SRI
- Over 150 membrane cartridges tested in skid (last step of QC)
- Longer testing up to 72 hours
- Selectivity: 19 50
- GPUs: 130 (150 °C)

Fiber Skid Shipped and Installed at UK CAER

Budget Period 2

Shipped to UK CAER July 2021

Fiber Skid Shipped and Installed at UK CAER

Budget Period 2

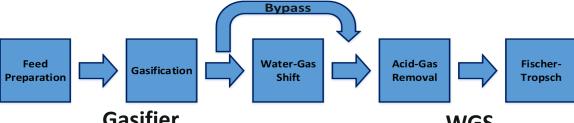
Installed at UK CAER July 2021

Gas lines going from CAER facility into Container

Skid inside Container

UK-CAER Pilot Facility

Gasification Unit


- Multi-burner, entrained flow, oxygen blown, slagging type
- 1 ton/day coal consumption
- Syngas production rate: ~80 m³/hr
- H₂/CO: ~.80

Water-Gas Shift

- Packed bed
- Sulfur tolerant sour shift catalyst
- H_2/CO : up to 11/1

Syngas Compressor

- Metal Diaphragm Compressor
- 450 psi max outlet pressure

Gasifier

Gasifier Operating Parameters		
Temperature (°C)	1350	
Pressure (MPag)	0.1	
CWS Solid (%)	53.0	
Syngas (vol%)		
H ₂	24.51	
N_2	2.93	
СО	28.94	
CO ₂	40.89	
H ₂ O	2.54	
H ₂ S	0.18	
cos	0.02	

WGS

Compressor

Test Plan and Schedule

Budget Period 2

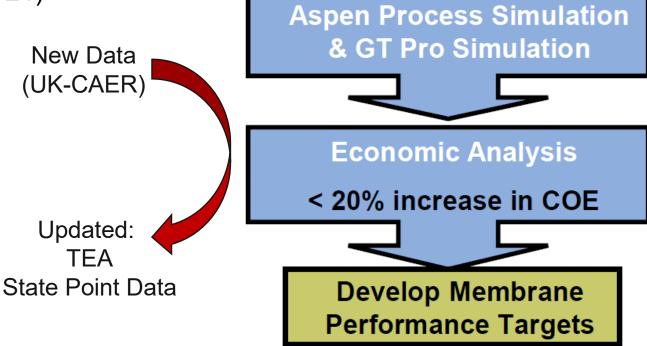
Parametric matrix

Parameter	Range/Value	Unit	
Temperature	80 - 225	°C	
Pressure	50 - 200	psig	
Gas			
Composition	Variable		
Stage Cut	0.2 - 0.7		
H ₂ in syngas	40-45	vol%	
CO ₂ in syngas	40-42	vol%	

<u>Testing Schedule:</u> <u>Starting September 7th, 2021</u>

Week#	Days/week	Hours/day	Total Hours
1	5	10	50
2	5	10	50
3	Test Data Analysis		
4	5	10	50
5	5	10	50
6	Test Data Analysis		
7	5	10	50
8	5	10	50
9	Test Data Analysis		

Future Work


Budget Period 2 Final Tasks

1. <u>UK-CAER</u>:

- 6-weeks of Testing (start date 09-07-2021)
- Generate high fidelity data

2. Post UK-CAER:

- Update Techno-Economic Analysis
- Technology Gap
- Technology Maturation Plan
- State Point Data Table

Technology Maturation

DOE Funding Critical to Technology Maturation

DOE enabled "first-of a kind" hollow fiber membranes of PBI in kilometer lengths

Accomplishment

DE-FC26-07NE43090

Producing Gen-1 PBI based membrane modules

Testing POTTED Gen-1 fiber bundles

Surface area ~ 100 cm²

Produce first ever porous hollow fiber membranes of PBI that were kilometers in length AND minimal defects

1000 hr Testing: Simulated syngas DE-FE0012965

Accomplishment

Producing and testing Gen-1 based membrane modules at NCCC

Developing Gen-2 PBI based fibers

Surface area ~ 5 m²

Consistent multi-fiber bundles that are kilometers in length of Gen-1 and Gen-2 with minimal defects

600 hr testing Air Blown syngas

In Progress

DE-FE0031633

Producing and testing Gen-2 based membrane modules at UKy-CAER

Higher selectivity and new module design

Surface area ~ 20 m²

Doubled spin capacity

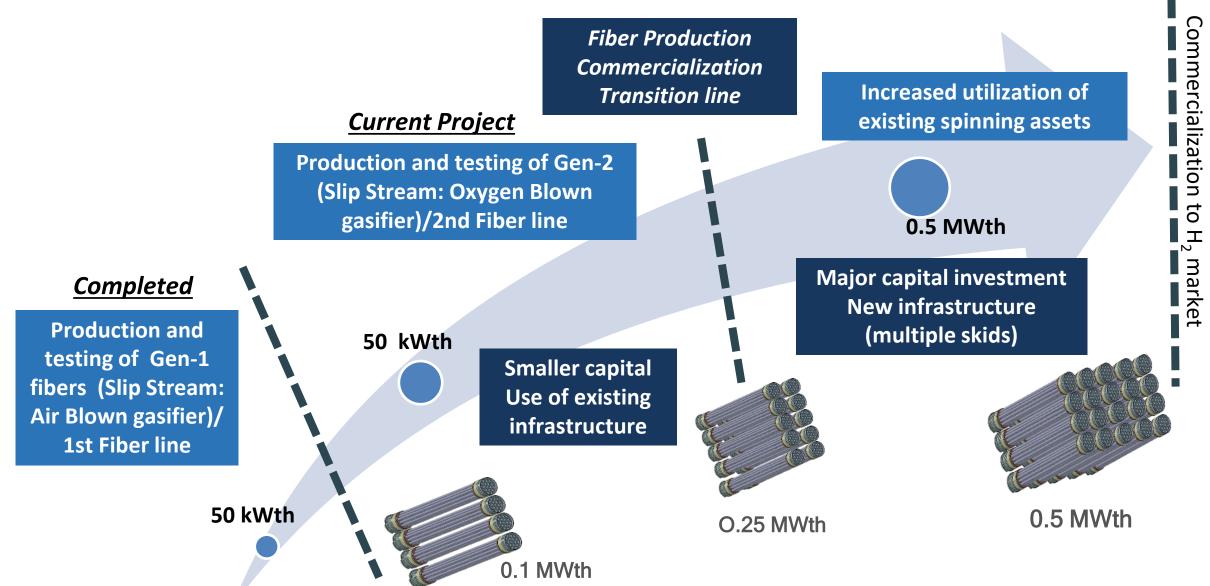
Production of 150 km of Gen-2 with minimal defects

PBI is attractive for pre-combustion applications

LANL demonstrates

Testing single

Surface area ~ 10 cm²


prepared by coating PBI on porous metal substrates

tubes

Membranes

2006 2008 2010 2012 2014 2016 2018 2020 2022

Roadmap to Small and Large Pilot Scale

SRI International

Acknowledgements

- Krista Hill, Andrew Jones, Jose Figueroa, Elaine Everitt, Lynn Brickett, and others at NETL
- Indira Jayaweera (Principal Investigator), and the rest of the SRI team:
 Srini Bhamidi, Regina Elmore, Xiao Wang, William Olson, Gopala Krishnan, Milad
 Yavari, Elisabeth Perea, Palitha Jayaweera and Chris Lantman
- Richard Callahan (Enerfex, Inc.)
- Kevin O'Brien (Energy Commercialization, LLC)
- Greg Copeland and Mike Gruender (PBI Performance Products)
- Kunlei Liu, Landon Caudill, and team (UK- CAER)
- John Jensvold and his team (Generon IGS)
- The staff at the NCCC

Thank You

Contact:

Dr. Indira Jayaweera

indira.jayaweera@sri.com

1-650-859-4042

SRI International

Headquarters 333 Ravenswood Avenue Menlo Park, CA 94025 +1.650.859.2000

Additional U.S. and international locations

www.sri.com