Inn^co₂Sepra

Transformational Sorbent-Based Process for a Substantial Reduction in the Cost of CO₂ Capture (DE-FE0031722)

> NETL Carbon Management Meeting August 17, 2021

Dr. Ravi Jain & Dr. Norberto Lemcoff InnoSepra, LLC 452 Lincoln Blvd Middlesex, NJ 08846 <u>ravi.jain@innosepra.com</u>, 908-672-7395

Executive Summary

- CO₂ Capture with physical sorbents, low heats of adsorption (~0.8 GJ/MT)
 - High purity CO₂ (>98%) at high recovery (>90-95%)
 - Up to 99% recovery possible with some process modifications
 - The estimated energy requirement (excluding compression) of 1.6 GJ/MT of CO₂, needed at about 110°C
 - 40% lower than Cansolv and 57% lower than MEA based on absolute energy requirement
 - 66% lower than Cansolv and 73% lower than MEA based on lost work analysis (160°C steam extraction temperature for amines)
 - Potential for about 45% reduction in the capital cost, and up to 50% reduction in the capture cost for CO₂ meeting pipeline specs
 - <\$30/MT capture cost without any increase in LCOE or any loss in power output
 - Lab scale testing, process simulation, and a preliminary TEA during BP1; bench scale testing at TCM and a final TEA during BP2

Presentation Outline

- Background on the Proposed Technology
- The DOE Project Summary (Objectives, Timeline, Budget, Key Activities)
- Project Partners
- Key Results from Budget Period 1
- Key Budget Period 2 Tasks and Budget Period 2 Status
- Summary

- Flue gas pretreatment for NO₂ and SO_x removal to sub-ppm levels, removal of substantial amounts of aerosols, and moisture removal to ppm levels
 - NO₂, SO_X and aerosol removal demonstrated at pilot scale; applicable to solvent capture
- Physical sorbents with a very high surface area (>10 million m²/m³), low heats of adsorption (0.8 GJ/MT of CO₂)
 - Adsorption at 25-40°C, regeneration at 90-110°C, high net CO₂ capacity (>8-wt%)
 - Pipeline quality CO_2 (>98% purity, <1 ppm H₂O and SO_X , <10-ppm O₂), >90% recovery
- Key innovation is the novel combination of process, sorbent regeneration and materials
 - Performance similar to or better than amines, much lower regeneration energy requirement

Field Demonstration of First Generation CO₂ Capture Process

- NRG's Indian River, DE coal fired power plant, more than 8 weeks of testing
- 80-100 scfm flue gas, 22-32°C feed, 50-ppm SO₂, 10-12% CO₂
- 8-10.5 wt% net CO₂ capacity in the field
- >94% CO₂ recovery, 98.5- 99.5% CO₂ purities, pipeline / EOR quality gas (<10 ppm oxygen and moisture)

Comparison with MEA for the 1st Generation Process

- The absolute energy requirement is 2.1 GJ/MT, about 40% lower than MEA; effective energy requirement (based on loss work analysis) is 1.1 GJ/MT, about 68% lower (lower steam extraction temp.)
- The CO₂ capture system capital cost, using DOE Lang factors, is about 38% lower compared to MEA for a 550 MW plant process
 - About \$246 MM for InnoSepra vs. \$397 MM for MEA on the same basis
- The parasitic power load is
- About 99 MW for InnoSepra, 18% of the plant output
- About 154 MW for MEA, 28% of the plant output
- The capture cost is \$38/MT vs. about \$74/MT for MEA (19.5% capital+maintenance charge, \$64/MWh for the lost power output)
 - About 48% reduction vs. MEA

The Second Generation InnoSepra Process (The Current DOE Project)

Second Generation InnoSepra Process

- A breakthrough regeneration method has allowed reduction in the absolute energy requirement to 1.6 GJ/MT (based on lab testing and process simulation) at about 110°C
 - The process is also simpler, significant capital savings over the first generation process
- Effective parasitic load of 0.96 GJ/MT based on a steam extraction temperature of 160°C (74 psia) for MEA and Cansolv
 - About 67% lower than Cansolv, and about 73% lower than MEA
 - Less than 16% of plant's output for CO₂ capture and compression
- The technology is to be demonstrated at the bench scale in 2022 at TCM (Technology Centre Mongstad)

The DOE Project (FE0031722)

- Objectives: >90% CO₂ recovery, >95% purity with a potential pathway for <\$30/MT capture cost by 2030
- The total project budget is U.S. \$4 million (\$3.13 MM DOE, \$0.87 MM match including significant match from TCM)
- In the first budget period (May 2019 to March 2021) we
 - Optimized the sorbent and the regeneration process through lab testing, Monte Carlo simulations, and process simulation
 - Did a detailed design and costing of the bench unit, a preliminary TEA, and a HAZOP addressing TCM integration issues
- In the second budget period (April 2021 to Dec 2022) we will
 - Construct and field test the bench unit (500 Nm³/hr scale)
 - Carry out a detailed engineering design, and a techno-economic evaluation for a commercial scale unit (550 MW power plant)

Project Participants

DOE/NETL

Project oversight, feedback, funding

InnoSepra

 Technology development at lab and bench scale, coordinate with partners, project management and reporting

Main Line Engineering

- Engineering design of the full scale plant, TEA, cost share
 TCM
 - Field testing, commercial feedback and cost share

Adroitech

Monte Carlo Simulation, fabrication of structured sorbents

Adsorptech / Fabrication Partners

Bench unit design and fabrication, cost share

Key Activities for BP1

- Monte Carlo simulations to identify the suitable sorbents
 - Sorbent structure variation can provide absolute CO₂ capacities (15% CO₂ at 25°C) between 18-wt% (CO₂-N₂ separation factors of 15-20), and 12-wt% (CO₂-N₂ separation factor over 200)
 - Confirmed through microbalance and breakthrough testing
- The regeneration process was optimized through cyclic testing
 - No loss in performance after multiple cycles, >8-wt% net CO₂ capacity
- Process simulation, integration with the host site, preliminary TEA
 - A detailed process simulation confirmed a power penalty of <16% of plant's output
 - A new CO₂ compression cycle for up to 20% reduction in energy needed for CO₂ compression
 - A detailed HAZOP and test site integration with TCM
 - A preliminary TEA indicating the potential for a capture cost of about \$30/MT

Identification of Suitable Materials

- A number of materials were identified based on Monte Carlo simulations and tested in the adsorption microbalance for CO₂ and N₂ capacities, and CO₂-N₂ separation
- A typical CO₂ isotherm (30°C, Micromeritics ASAP 2020) is shown below

- Depending on the material structure CO₂ capacities between 12-wt% and 18-wt%, separation factors between 15 and 650 can be obtained
 - High separation factors are associated with low CO₂ capacities

Breakthrough Testing

15.0 14.0 13.0 12.0 11.0 10.0 9.0 8 8.0 0 7.0 6.0 5.0 4.0 **----** 100 oC 3.0 2.0 1.0 0.0 2.0 12.0 0.0 4.0 6.0 8.0 10.0 14.0 16.0 Time (min)

Breakthrough Curves at Different Temperatures

Typical Breakthrough Curve (25°C)

Process Simulation Summary (Retrofit)

- Simulation of the CO₂ capture plant integrated with the coal-fired power plant with Aveva's Pro^{II} software
- The feed and product conditions (for a 550 MW SCPC plant) are:
 - Flue gas: 2,138,000 kmol/hr, 57°C, 100 kPa, 68.1% N₂, 13.5% CO₂, 15.2% water
 - Product CO₂: 9,517 kmol/hr, 99% CO₂, 15,270 kPa
 - Energy required for CO₂ capture and compression
 - Pumps, blowers and compressors: 54.8 MW
 - Lost electrical output in LP turbine: 24.2 MW
 - Total loss in electrical output: 79 MW
 - Electrical output loss as a percent of total output: 14.4%

Techno-Economic Evaluation Summary 550 MW SCPC Power Plant, 3.2 MM MT/year of CO₂ Captured

	MEA Capture	1 st Generation InnoSepra Process	2 nd Generation InnoSepra Process
Indicative Capital, U.S.\$MM	397	250	215
Power Loss Due to Steam Extraction, MW	87	32	24
Electrical Power (compression, auxiliaries), MW	67	67	55
Total Power Loss, MW	154	99	79
Power Loss as % of Base Output	28	18	14.4
CO ₂ Capture Cost at the plant gate, \$/tonne	62	36	31
CO ₂ Capture Cost including TS&M, \$/tonne	67	41	35

- 19.5% capital + maintenance charge, \$64/MWh replacement power
- A capture cost below \$25/MT even with doubling of capital cost for a capital charge of 10% (ION Eng C3DC2: 7.7%, Svante CO2Ment: 11.6%) and a replacement power cost of \$35/MWh (DOE: \$30/MWh, Svante: \$40/MWh)

Key Tasks for BP2

- Bench Unit Fabrication, Shipping and Installation
- Bench Unit Testing
 - Parametric testing
 - Continuous testing at optimized conditions
- Field testing report
- Detailed Engineering Design, Capital and Operating Costs, and the Final Techno-Economic Analysis for a 550 MW SCPC plant using DOE's Rev 4 guidelines (Retrofit and Greenfield)

Current Status for BP2

- Detailed engineering design of bench unit nearly complete
- Regular meetings with TCM to ensure that the design meets the sight requirements as well as shipping requirements
- Will go out for fabrication quotes soon
- Testing in Q2-Q3 (2022) per current schedule

InnoSepra – TCM interface and utilities

Image of TCM test bay for emerging technologies

- catching our future

The flue gas - RFCC

Component	unit	Value
CO ₂	mol%	13-14.5
SO _x	ppmv	5
NO _x	ppmv	100
Particles	mg/Sm ³	<0.5

InnoSepra - Solid sorbent CO2 capture

- 1. Only electrical power consumption
 - No steam at site
- 2. Cooling water and flue gas condensate
 - Sea water return line

Utility	Unit	value
RFCC Flue gas	Sm ³ /h	200-500
Seawater for cooling	m³/h	3-6
Instrument air	Sm ³ /h	5-10
Electric Power	kW	200

Summary

- The InnoSepra CO₂ capture technology has the potential for a significant reduction in the CO₂ capture cost for the power plant and industrial flue gases
- It is possible to obtain very high recovery (90-95%), and high purity (>98%) CO₂ with physical sorbents while meeting the EOR/sequestration product specifications
- Potential to reduce the parasitic power required by more than 65%, and the capital required by about 45% leading to about 50% reduction in the CO₂ capture cost for the coal-based power plant flue gas
 - After demonstration at the bench scale and further process optimization the process has the potential for a capture cost below \$30/MT with no increase in LCOE and no loss in power output