Novel Transformational Membranes and Process for CO₂ Capture from Flue Gas DE-FE0031731

PI: Winston Ho, Co-PIs: Yang Han & Li-Chiang Lin William G. Lowrie Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering The Ohio State University

Carbon Management and Natural Gas & Oil Research Project Review Meeting NETL, Pittsburgh, PA, August 17, 2021

Outline

- Project Overview
- Technical Background
- Accomplishments
- Summary/Outlook

Project Objective

- Develop a cost-effective design and fabrication process for a novel transformational membrane and its membrane modules that capture CO₂ from flue gas
 - 95% CO₂ Purity
 - 60 90% CO₂ Recovery

Funding and Performance Dates

- Total Budget: 07/01/2019 06/30/2022
 DOE: \$2,999,988; OSU: \$740,000; GTI: \$10,000
 (20% cost share)
 - BP1: 07/01/2019 12/31/2020
 DOE: \$1,395,100; OSU: \$348,778
 - BP2: 01/01/2021 06/30/2022
 DOE: \$1,604,888; OSU: \$391,222; GTI: \$10,000

Technical Background: Proposed Process

- Partial retentate recycle enables efficient separation
- Proposed membrane process does not require flue gas cooling and cryogenic distillation

Selective Amine Polymer Layer / Polymer Support

Efficient and Scalable Membrane for Low Cost

Amine Polymer Layer Contains Mobile and Fixed Carriers: Facilitated Transport

Facilitated Transport vs. Solution-Diffusion Mechanism

CO₂ Facilitated Transport Flux: Very High
 CO₂-amine reaction enhances CO₂ flux

- N₂ Flux: Very Low
 - N₂ does not react with amine
 - N₂ transport follows conventional physical solutiondiffusion mechanism, which is very slow

Technical Approach

• BP1: 07/01/2019 – 12/31/2020

- Computation-aided material design
- Lab-scale membrane synthesis, characterization and transport performance studies
- Design of integrated membrane skid
- High-level techno-economic analysis
- BP2: 01/01/2021 06/30/2022
 - Laboratory-scale membrane synthesis to continue
 - Fabrication and characterization of scale-up membrane (21" wide)
 - Fabrication and evaluation of spiral-wound membrane modules (8" diameter, 20" length)
 - Fabrication and field test of integrated membrane skid
 - Update techno-economic analysis by Gas Technology Inst.
- Integrated program with fundamental studies, applied research, synthesis, characterization and transport studies, and high-level techno-economic analysis

Developed Membrane Outperforms Others

Improved Polymer Support

 Substrate morphology has significant effect on CO₂ transport performance of composite membrane

Improved vs. Benchmark Supports

Improved

<u>Benchmark</u>

Better Membranes by Improved Polymer Supports

Excellent Stability with Simulated Flue Gas

- Feed gas contained 3 ppm SO₂ and 7% O₂ at 77°C
- Stability test resumed after 3-month shutdown due to COVID-19

 It remained stable with 3 restarts
 15

Membrane Scale-up: Continuous Rollto-Roll Fabrication Machine at OSU

Prototype Membrane Fabricated by Roll-to-Roll Casting and Coating

- 21" wide PES support fabricated for > 200 ft in length
- Thin selective layer coated on fabricated PES support

Prototype Spiral-Wound (SW) Membrane Element Fabricated

- 8"-diameter SW element fabricated using scale-up membrane
- Element contained 41 membrane leaves for 35 m² area

SW Membrane Element in Housing

ø8" SW element fitted tightly into SS module housing

Initial Module Test with Simulated Flue Gas

Summary/Outlook

- Achieved milestones/success criteria
 - Support CO₂ permeance = 23000 30000 GPU (>310000)
 - Membrane \overline{CO}_2 permeance = 3000 3800 GPU (>3600)
 - CO_2/N_2 selectivity = 80 140 (~160)
 - TEĀ: \$40.0 41.5/tonne capture cost (\$39.60/tonne)
 - Scale-up membranes fabricated (21" wide)
 - Prototype SW modules fabricated (Ø8" & 35 m²)

Remaining tasks

- Construction of bench skid
- Skid testing with simulated flue gas at OSU
- 500-h skid stability with actual flue gas at NCCC
- Environmental Health and Safety (EH&S) assessment

Acknowledgments

Krista Hill and Andy Aurelio, DOE/NETL – Great efforts and strong inputs

Financial Support

DOE/NETL: DE-FE0031731

Appendix

- Project Organization
- Gantt Chart

Project Organization and Roles

Ohio State University

- Technical lead
- New membrane synthesis/characterization
- Computation-aided material design
- Prototype membrane & module fabrication
- Integrated membrane skid fabrication
- Testing of integrated membrane skid

Winston Ho, Yang Han & Li-Chiang Lin

DOE NETL

Project Officer

Krista Hill

AEP

 Consult on plant integration and demonstration considerations

Randy Keefer

GTI

 Techno-economic analysis and cost calculations

Shiguang Li

Gantt Chart

	Total Cost			1s	st Quarter		2nd	l Quarter		3rd	Quar	er	4th Quarter		rter	5th Quar		ter	6tł	1 Qua	rter		
Task Name	of Task (\$)	Start	Finish	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	·Apr	May	Jun J	Jul	Aug	Sep	Oct	t Nov	Dec	Jan	Feb Mar
Budget Period 1	1,743,878	7/1/2019	12/31/2020																				
Task 1: Project Management and Planning	174,388	7/1/2019	12/31/2020																				
Updated PMP submitted			7/30/2019																				
Task 2: Synthesis of Improved Polymer Support	227,610	7/1/2019	3/31/2019																				
Complete polymer support synthesis and demonstrate CO_2																							
permeance of the support = $23000 - 30000 \text{ GPU}$ at ~77° C			3/31/2019										Ĭ										
Task 3: Optimized Synthesis of Transformational Membrane	455,222	7/1/2019	12/31/2020					Y				Y											
Subtask 3.1: Investigation of CO ₂ Carrier Structures	151,742	7/1/2019	12/31/2019					Ť		ľ													
Complete density functional theory calculations to identify																							
the structures for synthesis			12/31/2019							<u> </u>		V	\square										
Subtask 3.2: Incorporation of Nano-fillers	151,740	1/1/2020	6/30/2020									V											
Nano-fillers incorporated in the membrane			6/30/2020																				
Subtask 3.3: Synthesis of Higher MW Polyamine	151,740	7/1/2020	12/31/2020												Y								
Complete synthesis of $3-5$ million MW polyamine			12/31/2020	V				V		/													
Task 4: Membrane Characterization	455,222	7/1/2019	12/31/2020												Y			ľ					
Subtask 4.1: Morphology of Membranes	151,742	7/1/2019	12/31/2019	+				¥															
Obtain SEMs showing membrane morphologies			12/31/2019																				
Subtask 4.2: Transport Properties	151,740	1/1/2020	6/30/2020							·			Y I										
Determine CO $_2$ permeance and CO $_2/N_2$ selectivity			6/30/2020															V			V		
Subtask 4.3: Membrane Stability	151,740	7/1/2020	12/31/2020												Y								
Complete membrane stability testing and demonstrate CO_2																							
permeance = $3000 - 3800$ GPU and CO $_2/N_2$ selectivity =																							
$80 - 140 \text{ at} \sim 77^{\circ} C$			12/31/2020												1	,							
Task 5: Preliminary Techno-economic Analysis	158,886	4/1/2020	12/31/2020																		-		
Complete preliminary techno-economic analysis showing																							
the feasibility of $40.0 - 41.5$ /tonne CO ₂ for 90% recovery			12/31/2020																				
Task 6: Design of an Integrated Skid	227,610	4/1/2020	12/31/2020																		Ť		
Complete the design of the integrated skid			12/31/2020																				
Task 7: NCCC Site Preparation	44,940		12/31/2020															•			•		
Quarterly Progress Reports		10/1/2019																					
Budget Period 1 Annual Report		1/1/2021	3/30/2021																				

Gantt Chart

	Total Cost of				7th Quarter			8th Quart	er		9th Quarter		10th Quarte			er		11th Quarter		12th Quarter			L	
Task Name	Task (\$)	Start	Finish	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	p C	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul Au	ig Ser
Budget Period 2	2,006,100	1/1/2021	6/30/2022																					
Task 1: Project Management and Planning	200,610	1/1/2021	6/30/2022																			+		
Task 8: Construction of the Bench Skid	260,440	1/1/2021	8/31/2021																				1	
Task 9: Further Optimized Membrane Synthesis	65,110	1/1/2021	2/28/2021	-		-																		
Task 10: Optimized Membrane Characterization	48,830	2/1/2021	3/15/2021	+	Ť	_																	1	
Complete optimized membrane characterization and																							1	
demonstrate CO ₂ permeance = 3800 - 4000 GPU and						•																	1	
CO_2/N_2 selectivity = 140 - 200 at ~77°C			3/15/2021																				1	
Task 11: Scale-up Membrane Fabrication	179,050	3/1/2021	8/15/2021														1						1	
Task 12: Scale-up Membrane Characterization	162,770	4/1/2021	8/31/2021			+					+	_											1	
Complete scale-up membrane characterization and																						+	i T	
demonstrate CO ₂ permeance = $13800 - 4000$ GPU and																							1	
CO_2/N_2 selectivity = 140 - 200 at ~77°C			8/31/2021																				1	
Task 13: Prototype Membrane Module Fabrication	179,050	5/1/2021	10/15/2021				V			+		-		1						1			i T	1
Task 14: Prototype Membrane Module Testing	162,770	6/1/2021	10/31/2021					•					-	¥								\square	1	
Complete prototype membrane module testing and									1	1									1	1	1		i — —	1
demonstrate CO_2 permeance = $3800 - 4000$ GPU and																							1	
CO_2/N_2 selectivity = 140 - 200 at ~77° C			10/31/2021										V										1	
Task 15: Skid Testing with Simulated Flue Gas	97,660	9/1/2021	11/30/2021									-				-							1	
Complete skid testing with simulated flue gas and																							i T	
demonstrate CO ₂ permeance = 3800 - 4000 GPU and															•								1	
CO_2/N_2 selectivity = 140 - 200 at ~77°C			11/30/2021																					
Task 16: Skid Installation and Commissioning at NCCC	97,660	12/1/2021	1/15/2022														-						1	
Task 17: Parametric Testing of the Skid at NCCC	97,660	1/15/2022	2/28/2022																				1	
Complete skid parametric testing with prototype modules in																							1	
series and conditions for steady state operation identified			2/28/2022																					
Task 18: Continuous Steady Operation of the Skid at NCCC	260,440	3/1/2022	6/30/2022															Y						
Complete steady state operation with modules in series and																								
demonstrate feasibility on capture of the CO $_2$ with >95%																							í I	
CO_2 purity for >500 h			6/30/2022																					
Task 19: Final Updated Techno-economic Analysis	160,800	3/1/2022	6/30/2022															•						
Complete final techno-economic analysis showing the																								
feasibility of \$39.5 – 40.0/tonne CO 2			6/30/2022																					
Task 20: Removal of the Skid from NCCC	33,250	7/1/2022																						\perp
Task 21: State Point Data Table	0	6/1/2022						_		_														\perp
State point data table submitted			6/30/2022					_		_													\square	
Task 22: Technology Gap Analysis	0	6/1/2022	6/30/2022					_															\vdash	
Technology gap analysis submitted		(1) (2022	6/30/2022		-			_														+-1	\vdash	+
Task 23: Environmental Health & Safety Risk Assessment	0	6/1/2022					-																\vdash	+
EH&S risk assessment submitted		6/1/2022	6/30/2022							-		_										+	\vdash	+
Task 24: Technology Maturation Plan	0	6/1/2022	6/30/2022		-	_		_	-	-		_						-			-		\vdash	+
Technology maturation plan submitted		4/1/2021	6/30/2022 7/30/2022		-							_										+-1		+
Quarterly Progress Reports		7/1/2021			+				-			_										┿┹┦		
Final Project Report		//1/2022	9/30/2022	l	1		1				1						L	1	I			لسله	كالك	