Transformational Membranes for Pre-combustion Carbon Capture DE-FE0031635

PI: Dr. Winston Ho Co-PI: Dr. Yang Han

William G. Lowrie Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering The Ohio State University

Carbon Management and Natural Gas & Oil Research Project Review Meeting NETL, Pittsburgh, PA, August 16, 2021

Outline

- Project Overview
- Technical Background
- Accomplishments
- Summary/Outlook

Project Objective

- Develop a cost-effective design and fabrication process for a novel transformational membrane and its membrane modules that capture CO₂ from coal-derived syngas
 - 95% CO₂ purity
 - >99% H₂ recovery
 - COE 30% less than Baseline approaches

Funding and Performance Dates

- Total Budget: 10/01/2018 09/30/2021
 DOE: \$799,988; OSU: \$199,998 (20% cost share)
 - BP1: 10/01/2018 03/31/2020
 DOE: \$386,694; OSU: \$96,674
 - BP2: 04/01/2020 09/30/2021
 DOE: \$413,294; OSU: \$103,324

2-Budget Period Project

- BP1: 10/01/2018 03/31/2020
 - Laboratory-scale membrane synthesis, characterization and transport performance studies
 - High-level preliminary techno-economic analysis
- BP2: 04/01/2020 09/30/2021
 - Laboratory-scale membrane synthesis, characterization and transport performance studies to continue
 - Fabrication, characterization and transport performance studies of scale-up membrane (14" wide by 20' long)
 - Fabrication, performance and stability testing of spiral-wound membrane modules
 - Update techno-economic analysis performed in BP 1
- Integrated program with fundamental studies, applied research, synthesis, characterization and transport studies, and high-level techno-economic analysis

Technical Background: Proposed Process

 Proposed membrane process does not require significant syngas cooling (compared to competition)

Selective Amine Polymer Layer / Polymer Support

Simplicity of Membrane for Low Cost

Amine Polymer Layer Contains Mobile and Fixed Carriers: Facilitated Transport

Facilitated Transport vs. Solution-Diffusion Mechanism

CO₂ Facilitated Transport Flux: Very High
 CO₂-amine reaction enhances CO₂ flux

- H₂ Flux: Very Low
 - H₂ does not react with amine
 - H₂ transport follows conventional physical solutiondiffusion mechanism, which is very slow

Amine-Containing Carriers

- Fixed-Site Carrier

PNVF-co-VAm

Mobile Carriers

CO₂–Amine Chemistry

Unhindered Amine – Carbamate Pathway

• Hindered Amine – **Bicarbonate Pathway**

CO₂/H₂ Separation Properties

Membrane Performances

Simulated Syngas at 107°C and 35 bar

Hindered amine shows high selectivity at low p_{CO2}

Membranes Synthesized with Tuned H₂S/CO₂ Selectivities

Effect of H₂S/CO₂ Selectivity on H₂S Concentration in Retentate

15

Continuous Membrane Fabrication

Hybrid Membrane Allocation

Effects of Membrane Allocation on Membrane Area and H₂ Recovery

Hybrid Membrane Configuration Results in Lower COE

Spiral-Wound Modules Fabricated

Element Rolling Machine

800 cm² SW element of Type I FTM

1600 cm² SW element of Type II FTM

Spiral-Wound Module Testing

Simulated Syngas at 107°C and 35 bar

Summary/Outlook

- Achieved milestones/success criteria
 - $-CO_2$ permeance = 275 -350 GPU
 - $-CO_{2}/H_{2}$ selectivity = 120 140
 - TEĀ: 15% COE increase
 - Scale-up membranes fabricated (14" wide by 20' long)
 - Prototype SW modules fabricated (800 and 1600 cm²)

- Remaining tasks
 - 200-h stability test with simulated syngas
 - Final Techno-Economic Analysis

Acknowledgments

Katharina Daniels, Project Officer, DOE/NETL

DOE/NETL, Financial Support

Appendix

- Project Organization
- Gantt Chart

Project Organization and Roles

Ohio State University

- Technical lead
- New membrane synthesis/characterization
- Prototype membrane & module fabrication
- Testing of the membrane modules
- Cost calculations

Winston Ho / Yang Han

DOE NETL

Project Officer

David Lang Katharina Daniels

AEP

 Consult on plant integration and demonstration considerations

Randy Keefer

Microdyn-Nadir US Inc.

 Consult on membrane scaleup and module fabrication

Peter Knappe

Gantt Chart

				1st	1st Quarter 2		2nd Quarter			3rd Quarter			4th Quarte		rter	5th	5th Quarter		6th Quarter		rter			
Task Name	Start Date	End Date	Cost (\$)	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Ju
Budget Period 1	10/1/2018	3/31/2020	483,368																					
Task 1: Project Management and Planning	10/1/2018	3/31/2020	48,339																					
Updated PMP submitted		10/30/2018																						
Task 2: Synthesis of Transformational Membranes	10/1/2018	3/31/2020	193,402																					
Complete investigation of 5 of the 7 proposed membrane synthesis approaches		12/31/2019			,					,						,					,			
Task 3: Membrane Characterization	11/1/2018	3/31/2020	193,402																					
Complete membrane characterization and demonstrate CO_2 permeance = $200 - 275$ GPU and CO_2/H_2 selectivity																								
= $100 - 120$ at $\sim 110^{\circ}$ C and 31.7 bar feed inlet (12.5 bar CO ₂)		3/31/2020			,					/						,					/			
Task 4: Preliminary Techno-economic Analysis	10/1/2018	3/31/2020	48,225																					l
Complete preliminary techno-economic analysis showing the feasibility of a COE increase of 15.3%		3/31/2020																						
Quarterly Progress Reports	1/1/2019	4/30/2020																						
Budget Period 1 Annual Report	4/1/2020	6/30/2020																						

Gantt Chart

Task Name Start Dat Cost G port Mark June June Jong No. Jun Jun Jun Mag No. Jun Jun Jun Jun Jun Jun Jun Mag No. Jun					1st Ouarter			2nd Quarter			3rd Quarter 4t				rter	5th Ouarter			6th Ouarter					
Budget Period 2 41/12020 93/07/021 516.65 Composition of Management of Period 2 Composition 2 <t< th=""><th>Task Name</th><th>Start Date</th><th>End Date</th><th>Cost (\$)</th><th>Apr</th><th>May Ju</th><th>n Ju</th><th>l Aug</th><th>Sep</th><th>Oct</th><th>Nov</th><th>Dec</th><th>Jan</th><th>Feb</th><th>Mar</th><th>Apr</th><th>May</th><th>Jun</th><th>Jul</th><th>Aug</th><th>Sep</th><th>Oct</th><th>Nov</th><th>Dec</th></t<>	Task Name	Start Date	End Date	Cost (\$)	Apr	May Ju	n Ju	l Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Insk 1: Project Management and Planning 4/1/200 9/20/201 51,662 0 <td>Budget Period 2</td> <td>4/1/2020</td> <td>9/30/2021</td> <td>516,618</td> <td></td> <td>8</td> <td>-</td> <td></td> <td></td> <td></td>	Budget Period 2	4/1/2020	9/30/2021	516,618																8	-			
Insk 5: Optimized Membrane Synthesis 4/1/2020 63/0/2020 53,268 0 <td>Task 1: Project Management and Planning</td> <td>4/1/2020</td> <td>9/30/2021</td> <td>51,662</td> <td></td>	Task 1: Project Management and Planning	4/1/2020	9/30/2021	51,662																				
Issk 0: Optimized Membrane Characterization and incomposition of membrane characterization and learnows that CO ₂ permeter = 275 - 350 GPU and CO ₂ H ₂ 731/2020 33,268 Image: Composition of the compositis matche composition of the composition of the composit	Task 5: Optimized Membrane Synthesis	4/1/2020	6/30/2020	53,268																				
Complete optimized membrane characterization and knowskie 7/1/2020	Task 6: Optimized Membrane Characterization	5/1/2020	7/31/2020	53,268			+	-																
lemonstrate CO, permence = 275 - 350 OPU and CO ₂ H ₂ 731/2020 fack 7: Optimized Membrane Sale-up Rubrication 7/1/2020 fack 8: Optimized Seale-up Rubrication and lemonstrate CO ₂ 0/13/2020 fack 8: Optimized Seale-up Rubrication and lemonstrate CO ₂ 0/13/2020 feoretring + 120 - 140 at -110° C and 31.7 bar feed inlet 10/31/2020 12.5 bar CO ₂) 10/31/2020 leak 9: Prototype Membrane Module Fabrication 9/1/2020 leak 9: Prototype Membrane Module Fabrication 9/1/2020 leak 9: Prototype Membrane Module Esting and demonstrate CO ₂ 3/31/2021 CO ₂ permanee = 275 - 350 GPU At CO ₂ /H ₃ selectivity = 3/31/2021 Conglete prototype membrane Module Esting and demonstrate 2 CO ₂ permanee = 275 - 350 GPU At CO ₂ /H ₃ selectivity = 3/31/2021 Conglete prototype membrane Module Esting and demonstrate 2 CO ₂ permanee = 275 - 350 GPU At CO ₂ /H ₃ selectivity = 3/31/2021 Conglete prototype membrane Module sin Series 6/30/2021 Conglete prototype methrane Module Sin Series 7/1/2021 Conglete prametry is selectivity = 3/31/2021 South Conglete prametry is selectivity = 3/31/2021 Conglete prototype methrane Module Sin Series <	Complete optimized membrane characterization and																							
electivity = 120 - 140 at -110° C and 31.7 bar feed inlet 731/2020	demonstrate CO $_2$ permeance = 275 – 350 GPU and CO $_2/H_2$							I																
12.5 bar CO.j 7/31/2020 1	selectivity = $120 - 140$ at $\sim 110^{\circ}$ C and 31.7 bar feed inlet																							
Isak 7: Optimized Membrane Scale-up Exbrication 71/12020 10/15/2020 63,868 Image: Complete prime of the complete prim trest prim thim multipet prime of the complete prime of	(12.5 bar CO ₂)		7/31/2020				•																	
Task 8: Optimized Scale-up Membrane Characterization 8/1/2020 1/31/2020 43,658 Image: Complete decale-up membrane characterization and lemonstrate CO., permeance = 275 - 350 GPU & CO.,//r., second = 10/31/2020 Image: Complete decale-up membrane characterization 9/1/2020 58,338 Image: Complete decale-up membrane characterization Image: Complete decale-up membrane decale decale-up membrane decale-up deca	Task 7: Optimized Membrane Scale-up Fabrication	7/1/2020	10/15/2020	63,868				1																
Complete optimized socie-up membrane characterization and lemonstrate CO ₂ permeance = 275 - 350 GPU & CO ₂ /H ₂ 10/31/2020 58,338 Image: Complete optimized socies of the complete optimi	Task 8: Optimized Scale-up Membrane Characterization	8/1/2020	10/31/2020	43,658				*		+														
electivity = 120 - 140 at -110° C and 31.7 bar feed inlet 10/31/2020	Complete optimized scale-up membrane characterization and demonstrate CO ₂ permeance = $275 - 350$ GPU & CO ₂ /H ₂																							
12.5 bar CO2) 10/31/2020 58,338 Image: Conject of the Conjecon of the Conject of the Conject of the Conject of the Conject of	selectivity = $120 - 140$ at $\sim 110^{\circ}$ C and 31.7 bar feed inlet																							
Eask 9: Prototype Membrane Module Fabrication 9/1/2020 12/1/2020 58,338 Image: Complete prototype Membrane Module Testing 12/1/2020 3/31/2021 53,328 Image: Complete prototype Membrane Module Testing and demonstrate CO , permeance = 275 - 350 GPU & CO , /H , selectivity = Image: Complete prototype Membrane Module testing and demonstrate CO , permeance = 275 - 350 GPU & CO , /H , selectivity = Image: Complete prototype Membrane Module testing and demonstrate CO , permeance = 275 - 350 GPU & CO , /H , selectivity = Image: Complete prototype Modules in Series 20 , permeance = 275 - 350 GPU & CO , /H , selectivity = Image: Complete prototype Modules in Series 20 , permeance = 275 - 350 GPU & CO , /H , selectivity = Image: Complete prototype Modules in Series 20 , permeance = 275 - 350 GPU & CO , /H , selectivity = Image: Complete prototype Modules in Series 20 , permeance = 275 - 350 GPU & CO , /H , selectivity = Image: Complete prototype Modules in Series 20 , partial vitility of a conditions for steady state operation with Modules in Series 20 , partial vitility of a conditions for steady state operation with Modules in Series 20 , partial vitility of a conditions for steady state operation with Modules in Series 20 , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial vitility of a CO , with >95% CO , partial v	(12.5 bar CO ₂)		10/31/2020						Y	•														
fask 10: Prototype Membrane Module Testing 12/1/2020 3/31/2021 53,328 Image: Complete prototype membrane module testing and demonstrate CO2 permeance = 275 - 350 GPU & CO2/H2 selectivity = 3/31/2021 Image: Complete prototype membrane module is testing and demonstrate CO2 permeance = 275 - 350 GPU & CO2/H2 selectivity = 3/31/2021 Image: Complete prototype membrane module is testing and demonstrate CO2 permeance = 275 - 350 GPU & CO2/H2 selectivity = 3/31/2021 Image: Complete prototype modules in series and lemonstrate feasibility on capture of the CO2 with >05%CO2 poly = 0/30/2021 Image: Complete prototype modules in series and lemonstrate feasibility on capture of the CO2 with >95%CO2 poly = 0/30/2021 Image: Complete prototype modules in series and lemonstrate feasibility on capture of the CO2 with >95%CO2 poly = 0/30/2021 Image: Complete prototype modules in series and lemonstrate feasibility of a COE increase of 15.0% Image: Complete prototype modules in series and lemonstrate feasibility of a COE increase of 15.0% Image: Complete prototype modules in series and lemonstrate feasibility of a COE increase of 15.0% Image: Complete prototype modules in series and lemonstrate feasibility of a COE increase of 15.0% Image: Complete prototype modules in series and lemonstrate feasibility of a COE increase of 15.0% Image: Complete prototype modules in series and lemonstrate feasibility of a COE increase of 15.0% Image: Complete prototype modules in series and lemonstrate feasibility of a COE increase of 15.0% Image: Complete prototype modules in series and lemonstrate feasibility of a COE increase of 15.0% Image: Complete prototype modules in series and lemonstrate feasibility of a COE increase of 15.0% Imag	Task 9: Prototype Membrane Module Fabrication	9/1/2020	12/31/2020	58,338	:				-															
Complete prototype membrane module testing and demonstrate Congremence = $275 - 350 \text{ GPU} \& CO_2/H_2$ selectivity = $20 - 140 \text{ at} -110^\circ C \text{ ad} 31.7 \text{ bar feed} inter (12.5 \text{ bar } CO_2)$ Task 11: Parametric Testing with Prototype Modules in Series Complete parametric testing with prototype modules in series and conditions for steady state operation with Modules in Series Complete steady state operation with Modules in Series Complete steady state operation with modules in series and lemonstrate feasibility on capture of the CO_3 with $> 95\%CO_2$ writy with simulated syngas for 200 hours Task 13: Final Updated Techno-economic Analysis Complete final techno-economic analysis showing the easibility of a COE increase of 15.0% Task 14: State Point Data Table 9/1/2021 $9/30/2021$ $0Task 15: Final Technology Maturation Plan9/1/2021$ $9/30/2021$ $0Task 15: Final Technology Maturation Plan9/1/2021$ $9/30/2021$ $0Task 16: Environmental Health & Safety Risk Assessment9/1/2021$ $9/30/2021$ $0Carterly Progress Reports7/1/2021$ $1/20/2021$ $0Carterly Progress Reports7/1/2020$ $1/20/2021$ $0Carterly$	Task 10: Prototype Membrane Module Testing	12/1/2020	3/31/2021	53,328							,													
Task 11: Parametric Testing with Prototype Modules in series and conditions for steady state operation identified 4//2021 6/30/2021 50,210 Image: Complete parametric testing with prototype modules in series and conditions for steady state operation with Modules in series and conditions for steady state operation with Modules in series and conditions for steady state operation with modules in series and conditions for steady state operation with modules in series and lemonstrate feasibility on capture of the CO 2 with >95% CO 2 with >970/2021 Image: Complete Parametric Testing with prototype Modules in Series and lemonstrate feasibility of a COE increase of 15.0% 9/30/2021 Image: Complete Parametric Testing With Prototype Modules in Series and lemonstrate testing with prototype Modules in Series and lemonstrate function that the submitted 9/30/2021 Image: Complete Parametric Testing With Prototype Modules in Series and lemonstrate feasibility of a COE increase of 15.0% 9/30/2021 Image: Complete Parametric Testing With Prototype Modules in Series and lemonstrate testing With prototype Modules in Series and lemonstrate testing With Sinulated State Point Data Table 9/1/2021 9/30/2021 Image: Complete Parametric Testing With Parametric Testing With Prototype Modules in Series and lemonstrate Parametric Testing With Parame	Complete prototype membrane module testing and demonstrate CO_2 permeance = 275 – 350 GPU & CO_2/H_2 selectivity = $120 - 140$ at $\sim 110^{\circ}$ C and 31.7 bar feed inlet (12.5 bar CO_2)		3/31/2021																					
Complete parametric testing with prototype modules in series 6/30/2021 Image: Complete parametric testing with prototype modules in series 7/1/2021 9/30/2021 50,210 Image: Complete steady state operation with Modules in series and lemonstrate feasibility on capture of the CO 2 with >95% CO 2 with >9/30/2021 Image: Complete steady state operation with modules in series and lemonstrate feasibility on capture of the CO 2 with >95% CO 2 with >9/30/2021 Image: Complete steady state operation with modules in series and lemonstrate feasibility on capture of the CO 2 with >95% CO 2 with >9/30/2021 Image: Complete steady state operation with modules in series and lemonstrate feasibility of a COE increase of 15.0% Image: Complete final techno-economic analysis showing the 9/30/2021 Image: Complete final techno-economic analysis showin	Task 11: Parametric Testing with Prototype Modules in Series	4/1/2021	6/30/2021	50,210																				
Task 12: Continuous Steady Operation with Modules in Series and lemonstrate feasibility on capture of the CO2 with >95%CO2 purity with simulated syngas for 200 hours 9/30/2021 Image: Complete steady state operation with modules in series and power of the CO2 with >95%CO2 9/30/2021 9/30/2021 Image: Complete steady state operation with modules in series and power of the CO2 with >95%CO2 9/30/2021 9/30/2021 Image: Complete steady state operation with modules in series and power of the CO2 with >95%CO2 9/30/2021 9/30/2021 Image: Complete steady state operation with modules in series and power operation power operation with modules in series and power operation with modules in series and power operation analysis showing the power operation plan table 9/30/2021 Image: Complete steady ste	Complete parametric testing with prototype modules in series and conditions for steady state operation identified		6/30/2021																					
Complete steady state operation with modules in series and lemonstrate feasibility on capture of the CO 2 with >95% CO 2 9/30/2021 9/30/2021 Image: Complete feasibility on capture of the CO 2 with >95% CO 2 9/30/2021 9/30/2021 Image: Complete feasibility on capture of the CO 2 with >95% CO 2 9/30/2021 9/30/2021 Image: Complete feasibility on capture of the CO 2 with >95% CO 2 9/30/2021 9/30/2021 Image: Complete feasibility of a COE increase of 15.0% Image: Complete final techno-economic analysis showing the 9/30/2021 Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% Image: Complete feasibility of a COE increase of 15.0% <td>Task 12: Continuous Steady Operation with Modules in Series</td> <td>7/1/2021</td> <td>9/30/2021</td> <td>50,210</td> <td>)</td> <td></td>	Task 12: Continuous Steady Operation with Modules in Series	7/1/2021	9/30/2021	50,210)																			
lemonstrate feasibility on capture of the CO2 with >95% CO2 9/30/2021 9/30/2021 Image: Constraint of the CO2 with >95% CO2 9/30/2021 State signal decision of the CO2 with >95% CO2 9/30/2021 38,808 Image: Constraint of the CO2 with >95% CO2 9/30/2021 38,808 Image: Constraint of the CO2 with >95% CO2 9/30/2021 38,808 Image: Constraint of the CO2 with >95% CO2 9/30/2021 38,808 Image: Constraint of the CO2 with >9/30/2021 Image: Constraint >9/30/2021 Image: Constraint >9/30/2021 Image: Constraint >9/30/2021 Image: Constraint >9/30/2021 Image:	Complete steady state operation with modules in series and																							
Grant your simulated synds for 200 nodes 9/30/2021 38,808 Image: Solution of the s	demonstrate feasibility on capture of the CO_2 with >95% CO_2		0/20/2021														/				1			
Task 15. Final technology Maturation Plan 9/1/2021 9/30/2021 0 <td>Task 12: Final Undeted Taskna according Analysis</td> <td>5/1/2021</td> <td>9/30/2021</td> <td>20 000</td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td>┢───┤</td>	Task 12: Final Undeted Taskna according Analysis	5/1/2021	9/30/2021	20 000			_														_			┢───┤
compared matrix for the formation of the first state point data table submitted9/30/2021000 <td>Complete final techno-economic analysis showing the</td> <td>5/1/2021</td> <td>9/30/2021</td> <td>38,808</td> <td>,</td> <td></td> <td>_</td> <td></td> <td>┍──┦</td>	Complete final techno-economic analysis showing the	5/1/2021	9/30/2021	38,808	,		_																	┍──┦
Fask 14: State Point Data Table9/1/20219/30/20210III <td>feasibility of a COE increase of 15.0%</td> <td></td> <td>9/30/2021</td> <td></td> <td> </td>	feasibility of a COE increase of 15.0%		9/30/2021																					
State point data table submitted9/30/20219/30/20210III </td <td>Task 14: State Point Data Table</td> <td>9/1/2021</td> <td>9/30/2021</td> <td>0</td> <td>)</td> <td></td>	Task 14: State Point Data Table	9/1/2021	9/30/2021	0)																			
Final Technology Maturation Plan9/1/20219/30/20210III <td>State point data table submitted</td> <td></td> <td>9/30/2021</td> <td></td>	State point data table submitted		9/30/2021																					
Final technology maturation plan submitted9/30/2021Image: style styl	Task 15: Final Technology Maturation Plan	9/1/2021	9/30/2021	0)																			
Task 16: Environmental Health & Safety Risk Assessment9/1/20219/30/20210III<	Final technology maturation plan submitted		9/30/2021																					
EH&S risk assessment submitted 9/30/2021 Image: Constraint of the system of the s	Task 16: Environmental Health & Safety Risk Assessment	9/1/2021	9/30/2021	0)																			
Quarterly Progress Reports 7/1/2020 10/30/2021 Image: Constraint of the second s	EH&S risk assessment submitted		9/30/2021																					
Final Project Report 10/1/2021 12/30/2021 Image: Content of the second seco	Quarterly Progress Reports	7/1/2020	10/30/2021																					
	Final Project Report	10/1/2021	12/30/2021																					