

Proudly Operated by Battelle Since 1965

PARAMETRIC TESTING OF CO₂-BINDING ORGANIC LIQUIDS (CO₂BOLs) TO ENABLE INDUSTRY ADOPTION (FWP-76270)

[NETL/DOE Project Manager: Dustin Brown]

U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY CARBON MANAGEMENT AND NATURAL GAS & OIL RESEARCH PROJECT REVIEW MEETING VIRTUAL MEETINGS AUGUST 2 THROUGH AUGUST 31, 2021

Proudly Operated by **Battelle** Since 1965

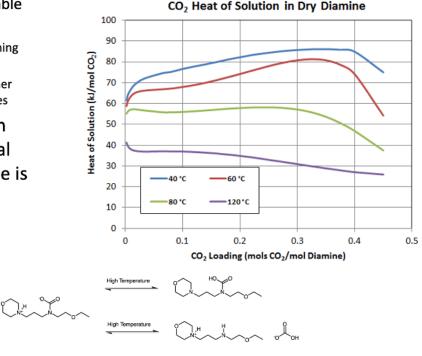
"This material is based upon work supported by the U.S. Department of Energy under Field Work Proposal FWP-76270."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Project Background

Proudly Operated by **Battelle** Since 1965

Engineering-Scale Test of a Water-Lean Solvent for Post-Combustion Capture



EEMPA can achieve low specific reboiler duties

The favorable thermal performance is attributable

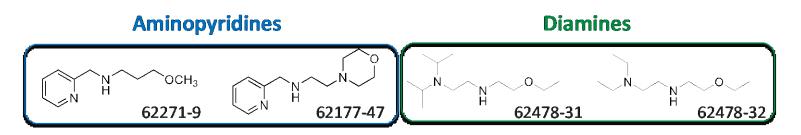
to

- The low water content (around 2 wt.% or less) meaning less water to vaporize
- A shift in the ionic character of the solvent with higher temperature, disfavoring the CO₂-bound ionic species
- SRDs down to 2.0 GJ/tonne have been observed in experiments. Cost-optimal designs for coal indicate 2.34 GJ/tonne is achievable.

www.epri.com

© 2021 Electric Power Research Institute, Inc. All rights reserved

Jiang et al. IJGHGC, 2021, 106, 103279.


Ebbi

Project Overview

Project Period: 5/1/2020-2/28/2022

Funding: \$1,827,000

Project Objectives:

- Provide critical data needed to project performance of three 3rd generation CO₂BOL single-component water-lean formulations (diamine, 2 aminopyridines)
- Measure essential physical and thermodynamic properties and demonstrate >90% capture of CO₂ on simulated flue gas for 40+ hours in steady-state operation
- Assess chemical durability of 3rd Generation CO₂BOL diamines and aminopyridines on simulated flue gas.
- Prime viable solvents for slip-stream testing and engage industrial partners for industry handoff.

Project Milestones

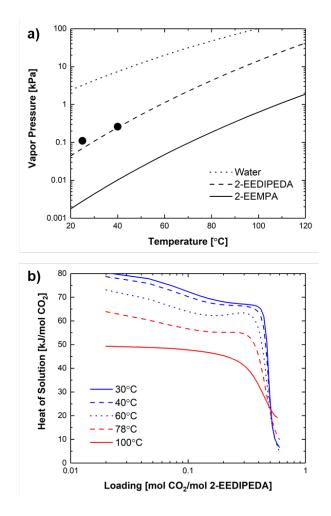
Completed dates underlined.

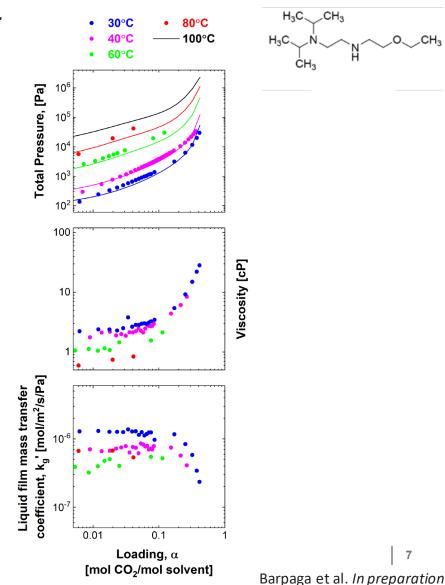
No.	BP	Task/ Subtask		Initial Planned Completion
M1.1	1	1	Updated Project Management Plan.	<u>6/1/2020</u> (completed)
M1.2	1	1	Go-No Go Presentation at NETL.	2/28/2021
M1.3	1	1	Delivery of final report to NETL	<u>1/31/2022</u>
M2.1	1	2	3-5L EEDIDA synthesized for testing. Synthetic costs of ~\$10/kg of compound.	9/30/2020 (completed)
M3.1	1	3	EEDIDA kinetics and VLE measured. k'g values comparable to MEA, VLE confirms heat of solution between -75 to -85 kJ/mol (enabling 90% capture).	<u>1/31/2021</u>
M4.1	1	4	Continuous Flow Testing on EEDIDA completed. At least 40 hours of steady state 90% capture from simulated flue gas (15% CO2, 85 % N2 with SOx, NOx, O2) with and without PSAR.	<u>2/28/2021</u>
M4.2	1	4	Final TEA of EEDIDA completed with costs targets at or below \$40/tonne CO2	<u>2/28/2021</u>

Proudly Operated by **Battelle** Since 1965

Success Criteria- BP1

All criteria for BP1 were met by 2/28/2021.

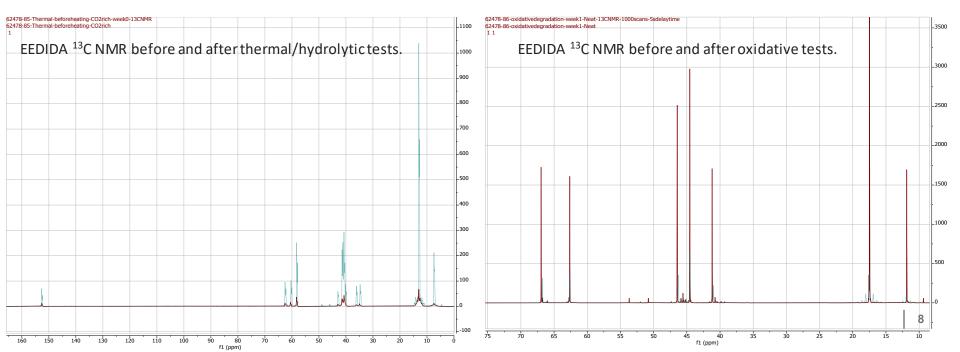

Date	Success Criteria
2/28/2021	Projected reboiler duty for EEDIDA in a simple stripper configuration is <2.0 GJ/tonne CO_2 or lower.
2/28/2021	Total costs of capture for EEDIDA are <\$50/tonne CO ₂ , with potential to meet DOE's \$40/tonne target in future efforts.
2/28/2021	Two new potential commercialization partners have been engaged to potentially partner on subsequent scale-up testing.



Proudly Operated by Baffelle Since 1965

Physical Property Measurements

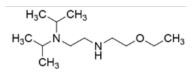
2-EEDIDA is comparable to 2-EEMPA, with lower viscosity and higher selectivity.



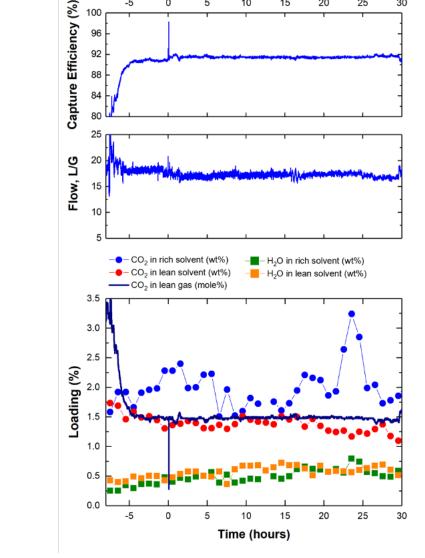
Chemical Durability Testing

2-EEDIDA is durable under absorber and stripper conditions, comparable to 2-EEMPA.

- Hydrolysis tests at simulated stripper conditions: 5-weeks, 117°C, 5 wt% water, CO₂ saturated, in tubular reactors with periodic sample analysis.
- Oxidative degradation tests at simulated absorber conditions: 0.5 mol-CO₂/mol in autoclave, 55°C, 2% CO₂/air mixture gas, 3 weeks, with periodic liquid analysis.
- ¹³C NMR, LC/MS and MS analysis suggests negligible degradation



Time (hours)


-5

Lab-Scale Testing on Simulated Flue Gas

2-EEDIDA achieved 40 hours steady-state CO₂ capture with no foaming, aerosols or LLE.

H₃C _CH₃

Proudly Operated by Battelle Since 1965

Techno-Economic Analysis

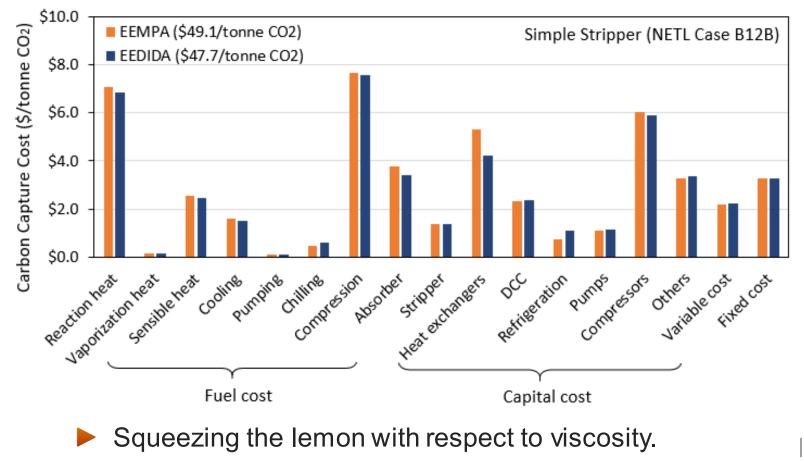
2-EEDIDA is projected to be 20% cheaper than B12B Baseline, and \$1.1/tonne cheaper than 2-EEMPA.*

Variable	MEA	Cansolv	2-EEMPA		2-EEDIDA	
NETL Reference	Case 12	Case B12B	Case B12B		Case B12B	
Configuration	SS	LVC	SS	TSF	SS	TSF
Lean Loading [mol CO ₂ / mol solvent]	0.27	-	0.113	0.113	0.113	0.113
Rich Loading [mol CO ₂ /mol solvent]	0.50			0.328	0.328	0.344
Water Loading [wt%]	70	-	1.6	1.6	1.7	1.7
Regeneration Temp [°C]	115	-	96	98	98	103
Regeneration Pressure [bar]		1.98	1.98	2.32	5.2/2.3	2.32
Reboiler Duty [GJ _e /tonne CO ₂]	3.55	2.48	2.35	2.36	2.22	2.30
Total Plant Cost [MM\$, 2011]	-	632	530	497	505	488
Cost of Capture [\$/tonne CO ₂]	-	58.3	49.1	47.1	47.7	46.6

*All costs are in 2012 dollars using NETL REV3 pricing.

Barpaga et al. In preparation

Techno-Economic Comparison With 2-EEMPA

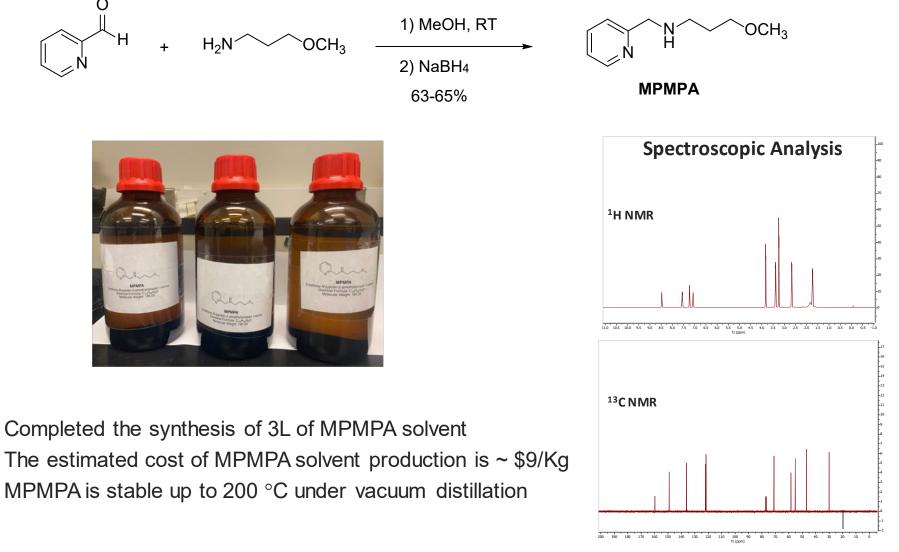

CH3

H₃C

CH₂

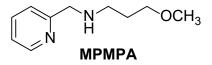
Proudly Operated by Battelle Since 1965

2-EEDIDA is \$1.4/tonne cheaper than 2-EEMPA due to lower viscosity and higher selectivity.


Barpaga et al. In preparation

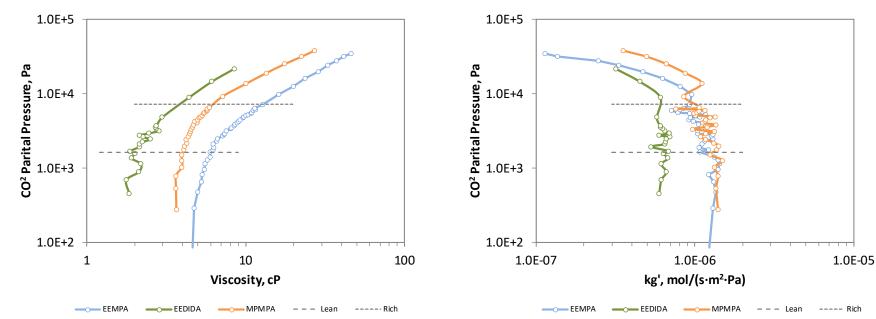
11

Synthesis of MPMPA solvent

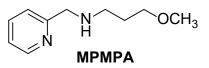

MPMPA is made from off the shelf-reagents in a 1-step condensation.

Physical Property Measurements

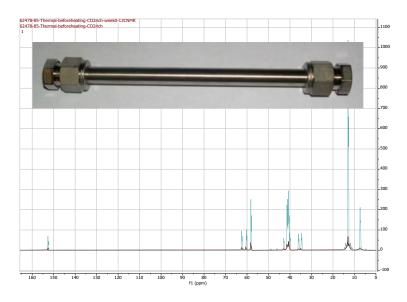
MPMPA has comparable properties to 2-EEMPA and 2-EEDIDA.

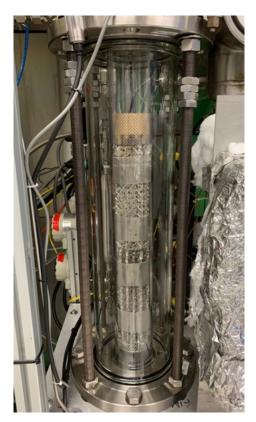


NATIONAL LABORATORY
Proudly Operated by **Battelle** Since 1965


Pacific Northwest

Current and Future Work


MPMPA is set to undergo thermal and oxidative stability and testing on WWC and LCFS.



NATIONAL LABORATORY
Proudly Operated by **Battelle** Since 1965

Pacific Northwest

Proudly Operated by Baffelle Since 1965

Project Schedule and Major Tasks – BP2

		BP-1							BP2													
		FY20									21							FY	(22			
												П								Т	Т	
	м	J	h	Α	s	0	Ν	D	J	F	м	Α	м	J .	J	A	S	n c		"	F	
Budget Period 2 (BP2)																						
1b. Project Management																						
5. Solvent Scale-up (AP: 1)																						
5.1 Develop solvent synthesis methodology with scale-up projections																				Т	Т	
5.2 Initial solvent scale-up production																					Т	
5.3 Solvent physical property measurements (e.g. VP, flash point, density)																				Т	Т	
5.4 Solvent durability and chemical degradation assessment																					Τ	
6. Solvent Testing (AP: 1)																					Т	
6.1 Vapor-liquid equilibrium, viscosity and other properties																				Т	Т	
6.2 Wetted-wall kinetics testing																				Т	T	
6.3 Preliminary TEA																				T	T	
7. Laboratory Continuous Flow System Testing (AP: 1)																				Т	T	
7.1 Parametric testing																				Т	T	
7.2 Long duration testing on realistic flue gas																				Т	T	
7.3 Data analysis and reporting																				Т	T	
7.4 Final TEA																				Т	Т	
8. Solvent Scale-up (AP: 2)																				T	T	
8.1 Develop solvent synthesis methodology with scale-up projections			T																	+	T	
8.2 Initial solvent scale-up production																				T	T	
8.3 Solvent physical property measurements (e.g. VP, flash point, density)																				+	T	
8.4 Solvent durability and chemical degradation assessment			L														T			\top	t	
9. Solvent Testing (AP: 2)																						
9.1 Vapor-liquid equilibrium, viscosity and other properties			T																		T	
9.2 Wetted-wall kinetics testing																					T	
9.3 Preliminary TEA		1	Γ													1					t	
10. Laboratory Continuous Flow System Testing (AP: 2)			t													1	ľ					
10.1 Parametric testing			Γ													1					Ĩ	
10.2 Long duration testing on realistic flue gas		1	T											Τ		1					t	
10.3 Data analysis and reporting			Γ																		T	
10.4 Final TEA		1	Γ													1					Ť	

Total - BP2

15

Conclusions and Future Work

Proudly Operated by Baffelle Since 1965

Key Findings:

- 2-EEDIDA is a viable solvent for post-combustion capture
 - 20% cheaper than Case 12B baseline (CANSOLV)
 - \$1.4/tonne CO₂ cheaper than 2-EEMPA
 - Chemically durable
- MPMPA preliminary analysis suggests comparable properties as 2-EEMPA and 2-EEDIDA

Upcoming efforts:

- Full kinetics and continuous flow testing for MPMPA on simulated flue gas
- Update all pricing and TEA to REV4 (2018 \$)

Acknowledgements

PNNL Team

DOE/NETL PM: Dustin Brown

Charles Freeman

Yuan Jiang

Richard Zheng Dushyant Barpaga

Andy Zwoster

Parametric Testing and Analysis **Process Modeling**

Greg Whyatt

Solvent Design Synthesis & Scaleup **Chemical Durability**

David Heldebrant

Phillip Koech Deepika Malhotra

Kat Grubel