
Updated Costs for Carbon Capture Retrofits

Timothy Fout Strategic Systems Analysis & Engineering Directorate

Preliminary Results – Subject to Revision

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Agenda

Natural Gas Retrofit Updates

- Design Basis
- Performance Results
- Cost Results
- Sensitivities

Design Basis

Basis for Model and Cost Development

- QGESS for Carbon Capture Retrofit (in process)
- QGESS for Capital Cost Estimation Methodology¹
- Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal (PC) and Natural Gas to Electricity (2019) – Rev 4²
 - Cases B31A/B (NGCC)
 - H-class supplement Cases B32A/B (in process)
- Aspen Plus v10
 - Previous revisions of the NGCC retrofit report were developed in GTPro
 - Development of F(retrofit)- and H-frame cases
 - 1 <u>https://netl.doe.gov/projects/files/QGESSCostEstMethodforNETLAssessmentsofPowerPlantPerformance_022621.pdf</u>
 - 2 https://netl.doe.gov/projects/files/CostAndPerformanceBaselineForFossilEnergyPlantsVol1BitumCoalAndNGtoElectBBRRev4-1_092419.pdf

Site Characteristics

Parameter	Value				
Location	Greenfield, Midwestern U.S.				
Topography	Level				
Size (NGCC), acres	100				
Transportation	Rail or Highway				
Water	50% Municipal and 50% Ground Water				

Parameter	Value					
Elevation, m (ft)	0 (0)					
Barometric Pressure, MPa (psia)	0.101 (14.696)					
Average Ambient Dry Bulb Temperature, °C (°F)	15 (59)					
Average Ambient Wet Bulb Temperature, °C (°F)	10.8 (51.5)					
Design Ambient Relative Humidity, %	60					
Cooling Water Temperature, °C (°F) ^A	15.6 (60)					
Air composition based on published psychrometric data, mass %						
N ₂	75.055					
0 ₂	22.998					
Ar	1.280					
H ₂ O	0.616					
CO ₂	0.050					
Total	100.00					

^AThe cooling water temperature is the cooling tower cooling water exit temperature. This is set to 4.8° C (8.5 °F) above ambient wet bulb conditions in ISO cases.

Fuel Characteristics

Componen	t	Volume Percentage				
Methane	CH ₄		93.1			
Ethane	C ₂ H ₆		3.2			
Propane	C₃H ₈	0.7 0.4				
<i>n</i> -Butane	C_4H_{10}					
Carbon Dioxide	CO ₂		1.0 1.6			
Nitrogen	N ₂					
Methanethiol ^A	CH ₄ S		5.75x10 ⁻⁶			
	Total		100.0			
	LHV		ННУ			
kJ/kg (Btu/lb)	47,201(20),293)	52,295 (22,483)			
MJ/scm (Btu/scf)	34.52 (9	27)	38.25 (1,027)			

^AThe sulfur content of natural gas is primarily composed of added Mercaptan (methanethiol $[CH_4S]$) with trace levels of hydrogen sulfide (H_2S)

Emission Limits

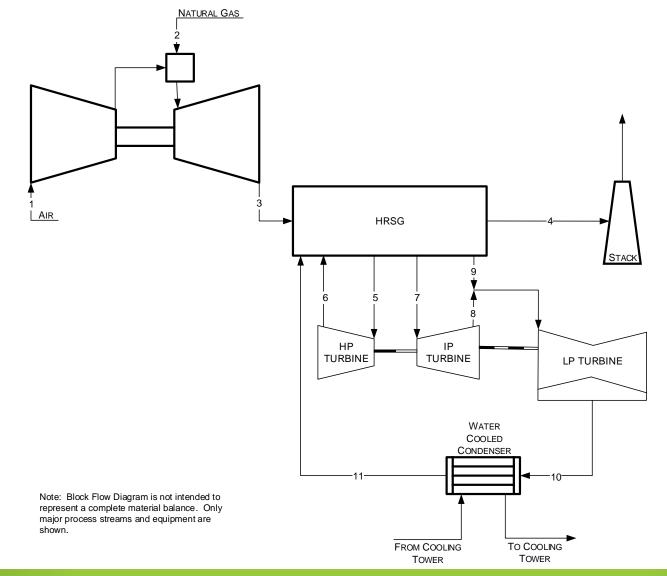
- Air Emissions: All cases are compliant with the current utility Mercury and Air Toxics Standards (MATS) and New Source Performance Standards (NSPS)
 - \circ CO₂ emission limit for NGCC technology is 1,000 lb CO₂/MWh-gross
 - \circ B31A has a CO₂ emission rate of 741 lb/MWh-gross

Pollutant ^A	NGCC (lb/MWh-gross)				
SO ₂	0.90				
NOx	0.43				
PM (Filterable)	N/A				
Hg	N/A				
HCI	N/A				

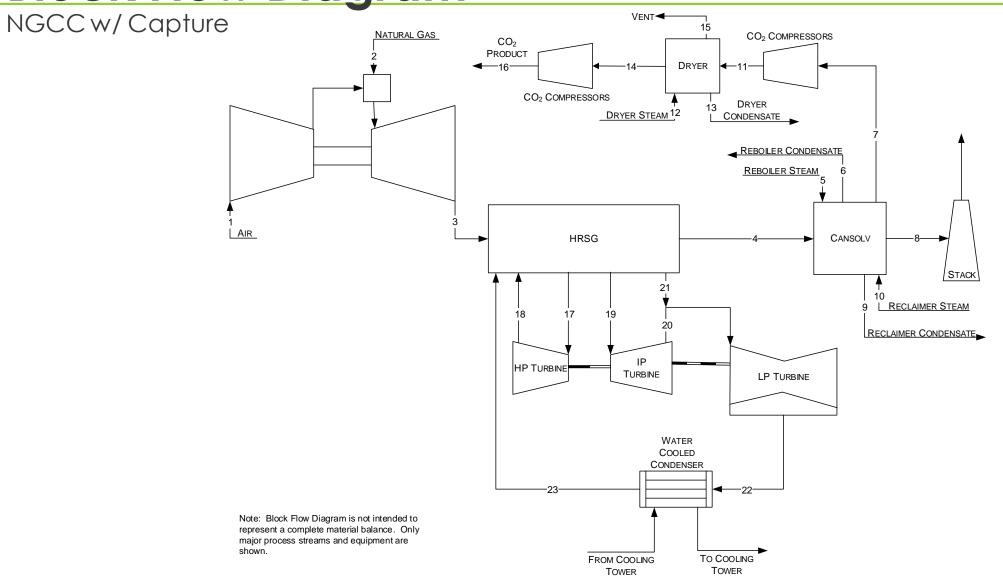
^A Carbon monoxide (CO) emissions will be reported as 1 ppm

- Water Emissions: Based on the global plant assumptions made for NGCC cases in Revision 4 of the Bituminous Baseline report, there were no water streams that required treatment to attain compliance with the effluent limitation guidelines
 - H-frame cases will apply the same set of plant assumptions, and thus, are compliant without additional treatment technology

Case List


Case ^A	Unit Cycle	Steam Cycle, psig/°F/°F	Combustion Turbine	Heat Recovery	Oxidant	NOx Control	CO ₂ Separation	Capture Rate	Plant Type	Process Water Treatment
B31A		2400/1085/1085	art 2017 F-Class	Heat Recovery Steam Generator Air (HRSG)	A :	Low NOx Burner and Selective	N/A	N/A	Greenfield	- -
B31B							Cansolv	90%	Greenfield	
B 31A-B R							Cansolv	90%	Brownfield (retrofit)	
B32A	NGCC		2 x State of the		Catalytic Reduction	N/A	N/A	Greenfield	N/A	
B32B		2700/1085/1045				-	Cansolv	90%	Greenfield	
B32A-BR							Cansolv	90%	Brownfield (retrofit)	

^A Natural Gas feed flow rate is the same amongst similar frames types.


Block Flow Diagram

- **NET NATIONAL ENERGY** TECHNOLOGY LABORATORY

Block Flow Diagram

Preliminary Results – Subject to Revision

NATIONAL

TECHNOLOGY LABORATORY

NERGY

12

Retrofit plants are assumed to be capture ready

Preliminary Results – Subject to Revision

- The IP/LP crossover pressure of 73.5 psia pre-retrofit is suitable for Cansolv applications
- In addition to the reduction in output from redirected steam flow prior to the LP turbine, additional derate due to off-design steam turbine flow was considered
- Derate calculations were performed in the Aspen Plus models
 - The derate is calculated as a ~2% decrease from the gross steam turbine power (reference study is Lucquiaud et al.)

Assumptions for retrofit cases

- Existing units are assumed to be fully paid off
- The only capital outlays required are for the carbon capture processes (including the removal technology process equipment, a CO₂ compression train, and any modification to the existing plant required for the retrofitted technology)
- Ongoing fuel costs, as well as fixed and variable O&M, and additional consumables are included in the levelized cost of electricity calculations

Cost Estimation

$$SC = RC * \left(\frac{SP}{RP}\right)^{Exp}$$

$$SC = RC * \left(\frac{SP}{RP}\right)^{Exp}$$

$$SC - greenfield equivalent of the scaled cost for the retrofit technology
RC - item reference cost
SP - process scaling parameter for the retrofit equipment
RP - process reference parameter for the reference plant equipment
Exp - scaling exponent
RDF - retrofit difficulty factor
FRC - factored retrofit cost$$

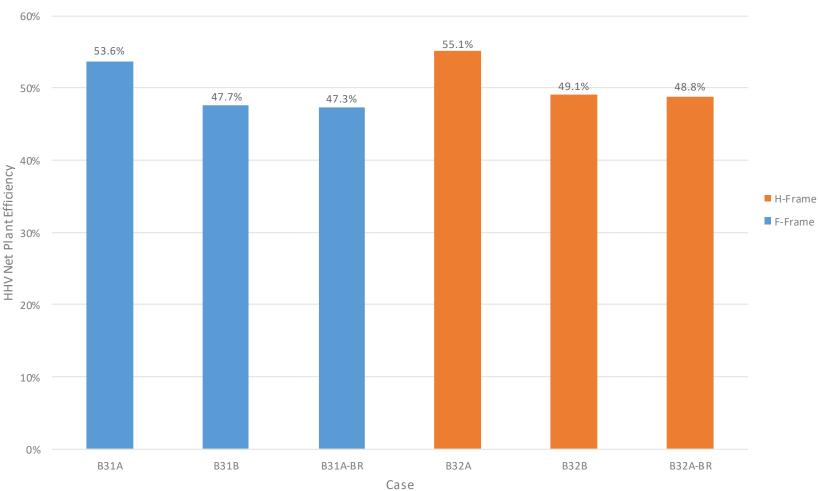
• The retrofit difficulty factor was applied at the total TPC level

- \circ RDF = 1.09 for NGCC cases
- RDF varies from 1 to 1.3 depending on difficulty of retrofit, type of equipment and labor productivity
- Value use represents an overall average

Financial Parameters

- The prior study/QGESS method had financial structures for low risk (NGCC w/o capture) and high risk (NGCC w/ capture); both were three-year construction periods.
 - -The updated QGESS* only includes differentiators for three versus five-year construction periods.
- The existing three-year construction period timeframe/financial structure was used as is.
- A make-up power cost (MPC) of \$30/MWh was added to retrofit cases to bring to net plant power back to pre-retrofit levels

*https://netl.doe.gov/projects/files/QGESSCostEstMethodforNETLAssessmentsofPowerPlantPerformance_022621.pdf

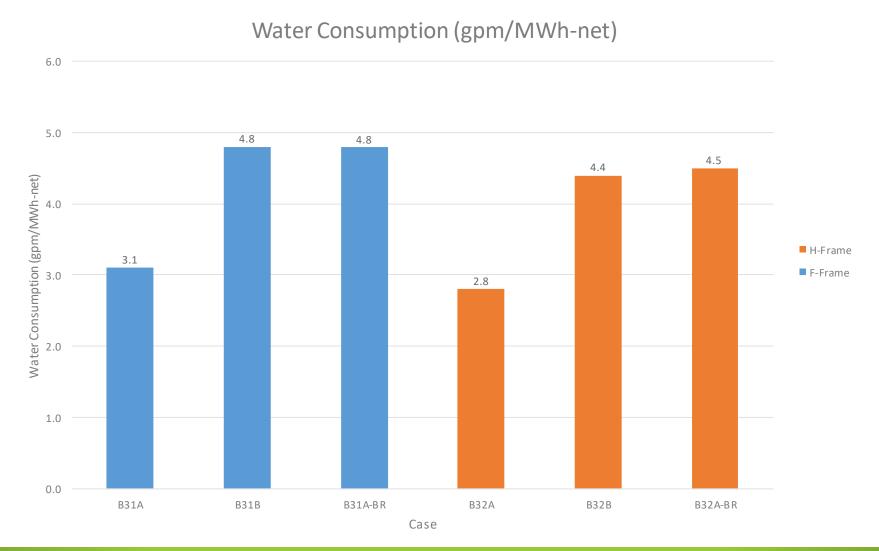


Performance Results

Performance Summary

HHV Net Plant Efficiency

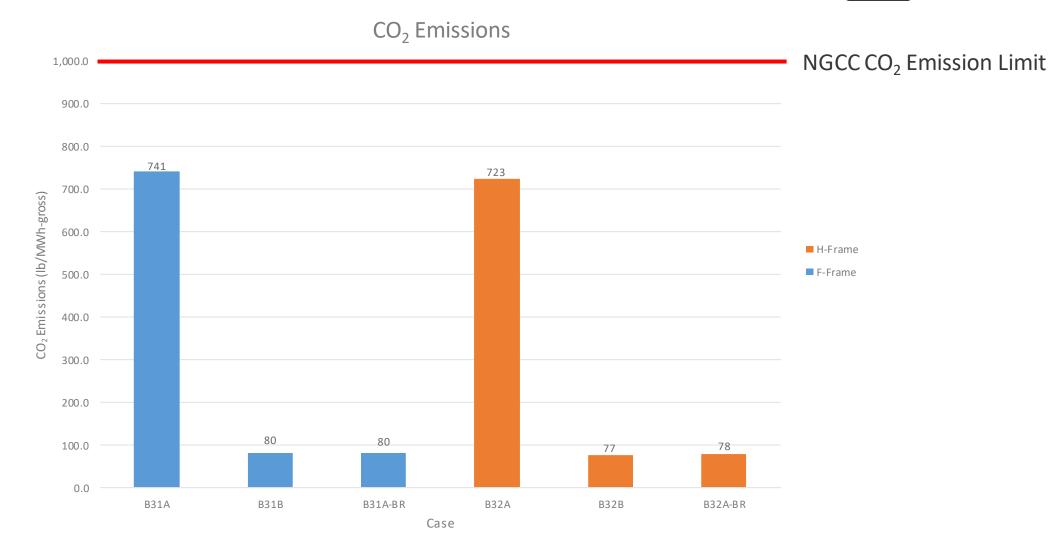
HHV Net Plant Efficiency


Preliminary Results – Subject to Revision

Performance Summary

NATIONAL ENERGY TECHNOLOGY LABORATORY

WaterUsage



Preliminary Results – Subject to Revision

Performance Summary CO₂ Emissions

NATIONAL ENERGY TECHNOLOGY LABORATORY

Cost Results

Levelized Cost of Electricity

NATIONAL ENERGY TECHNOLOGY LABORATORY

LCOE + T&S (\$/MWh)

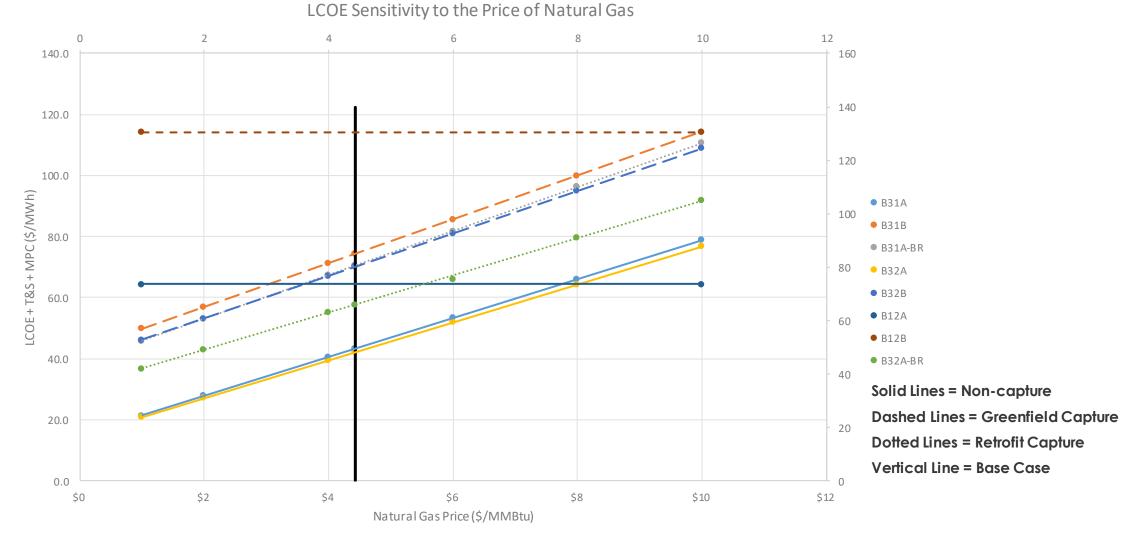
CO₂ Breakeven Point

Price of Natural Gas

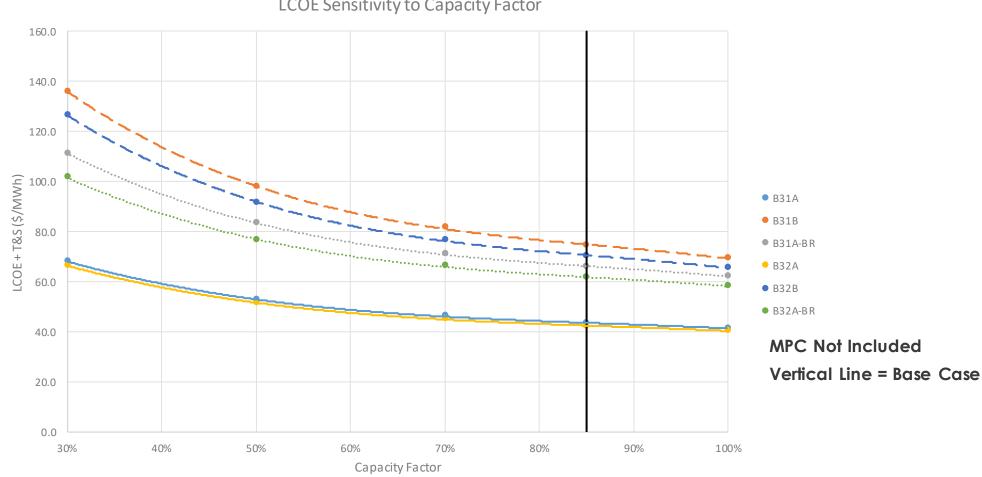
• \$1-10/MMBtu

Capacity Factor

30 to 100 percent

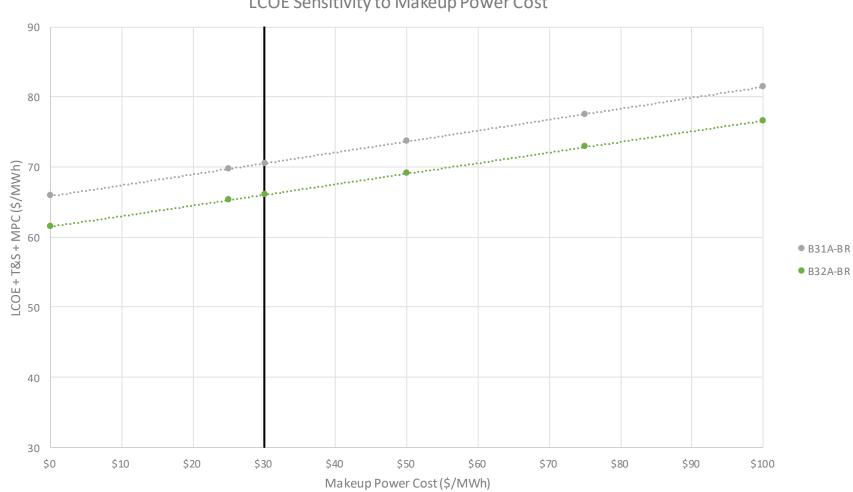

Make-up Power Cost

• \$0/MWh - \$100/MWh


NATIONAL ENERGY TECHNOLOGY LABORATORY

Price of Natural Gas

Capacity Factor



LCOE Sensitivity to Capacity Factor

Makeup Power Cost

Preliminary Results – Subject to Revision

Current work

- Updating Carbon Capture Retrofit Database to reflect this report
 - Incudes update to NGCC, PC and Industrial Database
- Analogous retrofit reports for Industrial and PC under review/development

Acknowledgements

<u>NETL</u>

• Travis Shultz

- NETL Support Contractors
- Alexander Zoelle
- Tommy Schmitt
- Mark Woods

