“Engineering-Scale Demonstration of Transformational Solvent on NGCC Flue Gas” (Project Enterprise)

DE-FE0031950
August 13, 2021

Nathan Fine, Ph.D.

Principal Investigator: Andrew Awtry, Ph.D.
Project Manager: Jennifer Atcheson
Outline

• Project Overview
• Introduction to Technology
 – Results from NCCC Pilot
• Project Scope and Schedule
• Progress & Current Status
 – Design Basis
 – Balance of Plant Design
 – Module and GA Drawings
• Summary & Development Path
DE-FE0031950: Project Enterprise

- **Overall Project Objective:**
 - To field test an engineering scale 10 tonnes per day (tpd) CO₂ capture system on a 1 megawatt-electric (MWe) slipstream flue gas from a commercially dispatched natural gas combined cycle (NGCC) power plant to empirically validate the low capital and operating costs for ICE-31

- **Budget:**
 - DOE-NETL: $13,000,000
 - ION and partners: $3,906,839

- **Period of Performance:**
 - October 1, 2020 to October 31, 2023
Project Enterprise Team

U.S. Department of Energy
National Energy Technology Laboratory

ION Clean Energy
(Lead Institution)

- Project Management and Communication with all relevant stakeholders on status and results
- Supervise design and construction of CO₂ Capture and Balance of Plant Systems
- Develop and execution of test plan for 1-MWe demonstration; Analysis of data during demonstration
- Complete DOE Deliverables: TEA, EH&S Risk Assessment, Technology Maturation Plan

Koch Modular Process Systems
Subcontractor
- Process design & costing for CO₂ capture pilot
- Fabrication of modular CO₂ capture pilot system

Calpine Corporation
Host Site
- Host site of 1-MWe test facility
- Facilitate permits for pilot
- Operations support during test campaign

Sargent & Lundy (S&L)
Subcontractor
- Design of all required balance of plant systems
- Installation of BOP and modular systems
- Decommissioning of the pilot system
- Techno-economic Analysis

Hellman & Associates
Subcontractor
- EH&S Support for test campaign
- EH&S Risk Assessment
ICE-31 SOLVENT TECHNOLOGY
ICE-31

Basis of Performance (compared to ICE-21)

- Lower energy consumption
- Similar fast kinetics
- Higher working capacity
- Low heat capacity
- Low corrosion
- Revolutionary stability
ION’s CO₂ Capture Technology Development – ICE-31

Development Path

- **2016**
 - Lab Development
 - Simulated Flue Gas

- **2017 - 2018**
 - Bench-scale Pilot
 - Coal

- **2020 - 2021**
 - National Carbon Capture Center
 - 0.5 MWe
 - Coal & Natural Gas

- **2020 - 2023**
 - Project Enterprise Engineering Scale
 - 10 tpd (~1 MWe)
 - Natural Gas

- **2022 →**
 - Commercial Scale

© ION CLEAN ENERGY
First 60 Days of Operation

70 Different Parametric Settings

- Flue Gas: 4.4-7.9% CO₂ Baseline: 4.4%
- Flue Gas Inlet T: 30-40 °C Baseline: 35 °C
- Capture: 80-98% Baseline: 95%
- Absorber: 12-18 m MP252Y Baseline: 18 m
- Stripper: Simple and CRB Baseline: Simple
- CO₂ Pressure: 1.75-1.9 bara Baseline: 1.9 bara

Switch To and Recalibrate Low Steam Flowmeter
Account for Heat Loss

© ION CLEAN ENERGY
Stable SRD and Operations

Specific Reboiler Duty (Arbitrary Units)

© ION CLEAN ENERGY
NCCC Apollo Campaign

溶剂浓度

（归一化）

No Solvent Additions
Constant System Inventory (± 2%)
PROJECT SCOPE AND SCHEDULE
Project Scope and Key Milestones

- Design, permit, and cost permit the pilot plant
- Finalize engineering, fabricate modules, and develop controls
- Install modules, connect Balance of Plant, finish commissioning
- Field-test ICE-21 and ICE-31 with NGCC flue gas
- Final data evaluation and extensive reporting

<table>
<thead>
<tr>
<th>#</th>
<th>Milestone Title / Description</th>
<th>Planned Completion Date</th>
<th>Actual Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>Kickoff Meeting</td>
<td>12/04/2020</td>
<td>12/09/2020</td>
</tr>
<tr>
<td>M4</td>
<td>HAZOP Completed</td>
<td>3/10/2021</td>
<td>05/27/2021</td>
</tr>
<tr>
<td>M6</td>
<td>Modular Pilot System Cost</td>
<td>3/24/2021</td>
<td>06/18/21</td>
</tr>
<tr>
<td>M8</td>
<td>Balance of Plant Cost</td>
<td>5/18/2021</td>
<td>06/18/21</td>
</tr>
<tr>
<td>M12</td>
<td>Modular System Factory Acceptant Testing</td>
<td>2/28/2022</td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>Complete Pilot System Site Acceptance Testing</td>
<td>5/24/2022</td>
<td></td>
</tr>
<tr>
<td>M16</td>
<td>Baseline MEA and ICE21 Testing</td>
<td>09/21/2022</td>
<td></td>
</tr>
<tr>
<td>M17</td>
<td>ICE31 Testing</td>
<td>10/05/2023</td>
<td></td>
</tr>
<tr>
<td>M19</td>
<td>DOE Close-Out Meeting</td>
<td>12/31/2023</td>
<td></td>
</tr>
</tbody>
</table>
Success Criteria

<table>
<thead>
<tr>
<th>Decision Point</th>
<th>Success Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusion of BP1</td>
<td>• Completion of initial TEA and EH&S Risk Assessments</td>
</tr>
<tr>
<td></td>
<td>• Completion of design package for modular pilot system</td>
</tr>
<tr>
<td></td>
<td>• Fixed price quotation for modular pilot system</td>
</tr>
<tr>
<td></td>
<td>• Completion of design of BOP scope to commence construction period</td>
</tr>
<tr>
<td></td>
<td>• Approval from the host site to commence construction period</td>
</tr>
<tr>
<td>Conclusion of BP2</td>
<td>• Fabrication, delivery, installation and commissioning of modular pilot system</td>
</tr>
<tr>
<td></td>
<td>and all balance of plant tie-ins</td>
</tr>
<tr>
<td></td>
<td>• Test plan finalized</td>
</tr>
<tr>
<td></td>
<td>• Solvents required for test campaign delivered to host site</td>
</tr>
<tr>
<td>Project Completion</td>
<td>• Completion of engineering-scale demonstration of baselines and ICE-31</td>
</tr>
<tr>
<td></td>
<td>• Issuance of updated TEA and EH&S Risk Assessments</td>
</tr>
</tbody>
</table>
CURRENT PROGRESS
Modular Design
Modular Design
SUMMARY AND DEVELOPMENT PATH
Current Project Findings & Next Steps

• Completed Engineering Phase of BP1
 – Final design is very similar to initial conceptual design
• HAZOP completed in coordination with host site
• Modular system design is prior Koch Modular built units
• No “showstoppers” in permitting
 – California permitting is among most stringent in the US
 – ION’s solvent and process mitigate hazardous emissions
• Continuation application submitted

*Example of Typical Koch Modular Install
Project Enterprise Next Steps

Budget Period 1
4Q2020 – 2Q2021
- Host Site Agreement
- Modular System Design
- BOP Design
- Cost Estimates for Construction
- Permitting

Budget Period 2
Starts 3Q2021
- Modular System Fabrication
- Site Preparation
- Installation
- Commissioning

Budget Period 3
2022 – 2024
- Baseline Testing MEA & ICE-21
- ICE-31 Testing
 - Parametric
 - Long-term Testing
- Final Reporting

© ION CLEAN ENERGY
THANKS

Acknowledgement
This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FC03-17ER.

Disclaimer
This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Project Enterprise Team

U.S. Department of Energy
National Energy Technology Laboratory

ION Clean Energy
(Lead Institution)

- Project Management and Communication with all relevant stakeholders on status and results
- Supervise design and construction of CO₂ Capture and Balance of Plant Systems
- Develop and execution of test plan for 1-MWe demonstration; Analysis of data during demonstration
- Complete DOE Deliverables: TEA, EH&S Risk Assessment, Technology Maturation Plan

Koch Modular Process Systems
Subcontractor
- Process design & costing for CO₂ capture pilot
- Fabrication of modular CO₂ capture pilot system

Calpine Corporation
Host Site
- Host site of 1-MWe test facility
- Facilitate permits for pilot
- Operations support during test campaign

Sargent & Lundy (S&L)
Subcontractor
- Design of all required balance of plant systems
- Installation of BOP and modular systems
- Decommissioning of the pilot system
- Techno-economic Analysis

Hellman & Associates
Subcontractor
- EH&S Support for test campaign
- EH&S Risk Assessment
Project Schedule

Figure 1: Project Schedule (Revised July 2021)