"Validation of Transformational CO₂ Capture Solvent Technology with Revolutionary Stability" (Apollo)

DE-FE0031727 August 12, 2021

Nathan Fine, Ph.D. (Technical Lead)

Principal Investigator:Erik Meuleman, Ph.D.Project Manager:Tyler SilvermanMajor contributors:Greg Staab, René Kupfer

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

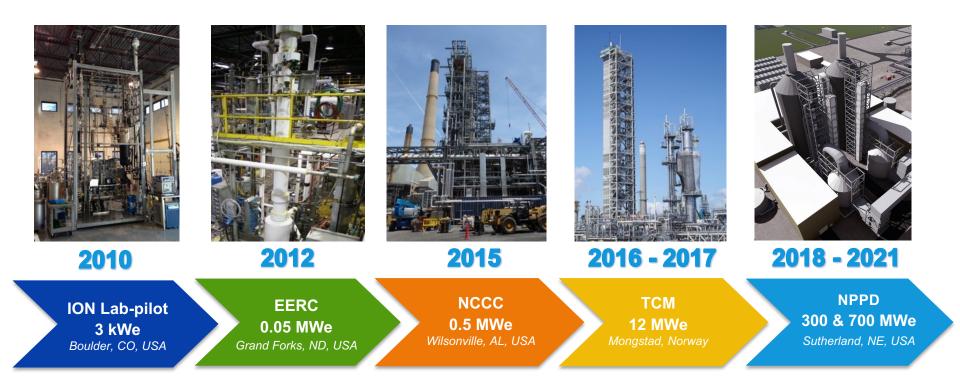
Outline

- Project Overview
- Introduction to Technology
- Project Scope/Schedule/Success Criteria/Risks & Mitigation
- Progress & Current Status
 - Campaign test plans & PSTU Modifications
 - Parametric testing at NGCC conditions
 - Long-term Steady-state testing at NGCC conditions
- Summary & Development Path

© ION CLEAN ENERGY

DE-FE0031727: Apollo Project

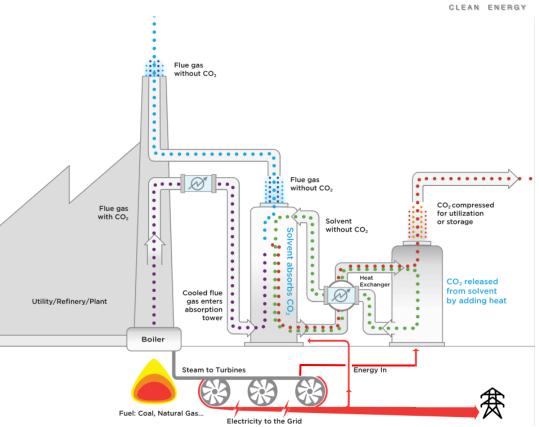
- Overall Project Objective:
 - Scaling up a novel amine-based solvent technology with revolutionary stability and excellent CO₂ capture performance from a small-scale (~0.03 MWe) to a ~0.5 MWe scale using real flue gas
- Budget:
 - DOE-NETL: \$2,999,998
 - ION and partners: \$750,000
- Period of Performance:
 - June 1, 2019 to Jan 31, 2022
 - Currently scheduled on-site through Oct 2021



Wilsonville, AL (Courtesy of NCCC)

ION's CO₂ Capture Technology Development / ICE-21

Accelerated development path leveraging existing research facilities


ION

CLEAN ENERG

ICE-31

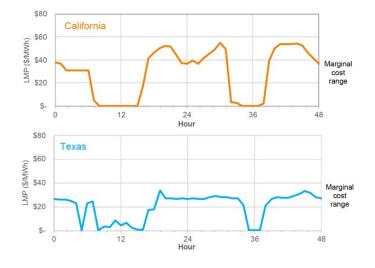
Basis of Performance (compared to ICE-21)

- Lower energy consumption
- Similar fast kinetics
- Higher working capacity
- Low heat capacity
- Low corrosion
- Revolutionary stability

Project Scope and Key Milestones

- Laboratory scale work to fill critical knowledge gaps
- Run lab pilot for initial validation of ProTreat model
- Prepare for field-testing at NCCC
- Field-testing in the PSTU on:
 - 4.4 and 8% CO₂ from gas boiler
 - 11-13% from coal-derived flue gas
- Final data evaluation and extensive reporting

#	Milestone Title / Description	Originally Planned Completion Date	Revised Planned Completion Date	Actual Completion Date				
M1	Kickoff Meeting	06/01/2019	11/15/2019	12/05/2019				
M4	Functioning, ProTreat® Module Delivered & Accepted	10/15/2019	07/31/2020	01/13/2021				
М7	Host Site Modifications Installed & Commissioned by NCCC	1/2/2020	05/31/2020	03/26/2021				
M8	Detailed Test Plan for PSTU Campaign Reviewed and Approved by ION & NCCC	12/16/2019	05/31/2020	01/19/2021				
M10	PSTU Test Campaign Complete (per Test Plan)	7/13/2020	10/31/2021					
M11	Process Model Validation Complete	9/21/2020	10/31/2021					
M12	Solvent Degradation Studies Complete	5/5/2020	11/30/2021					
M13- M16	Appendices C, D, E, F of FOA	03/02/2021	01/31/2022					
M17	Final Report Delivered to DOE-NETL	05/31/2021	01/31/2022					



CAMPAIGN PLANS & PSTU MODIFICATIONS

© ION CLEAN ENERGY

Technical Objectives in PSTU at NCCC with ICE-31

- Parametric testing to determine operating • window and validate ProTreat[®] model
- Demonstrate revolutionary stability of ICE-31 •
- Dynamic operations to determine maximum ۰ ramp-rates, minimize energy consumption and minimize emissions
- Upsets to determine process and solvent • stability:
 - Increased O₂ concentration
 - Increased stripper temperature _
 - Unplanned FGD outage (high SO_x events)
 - Unplanned DCC outage (high T events)

J. Seel, et al., https://emp.lbl.gov/publications/ impacts-high-variable-renewable (2018)

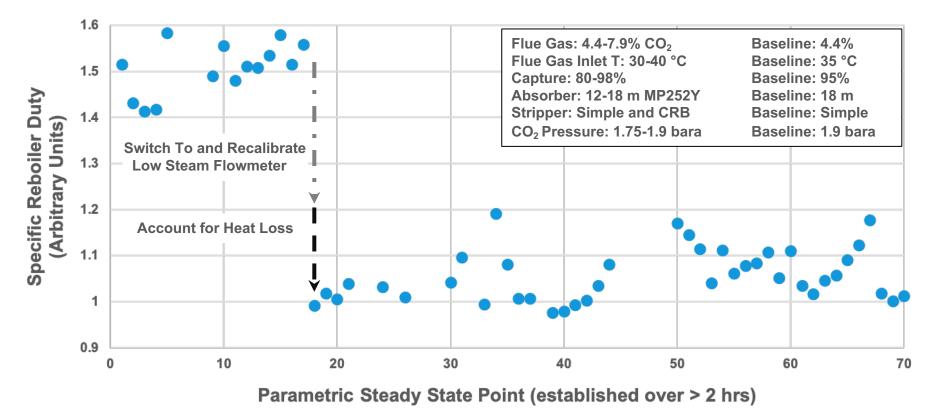
PSTU Modifications

Both General and ION-specific Operations

• Secondary water wash in PSTU absorber

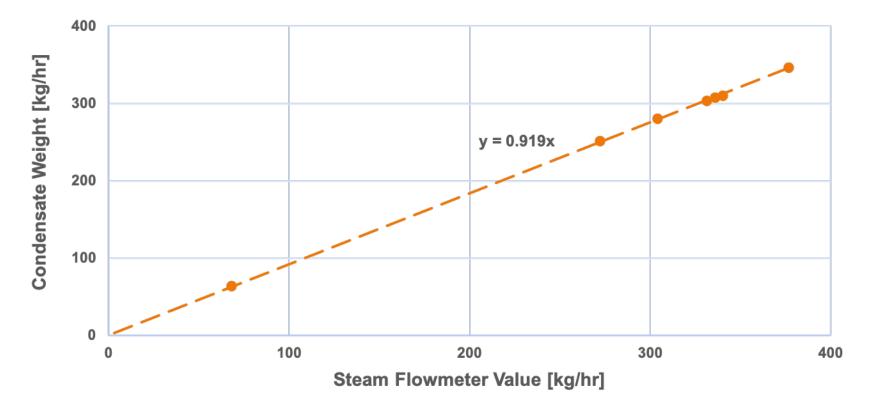
- Cold-Rich Bypass (CRB) around lean-rich cross exchanger to stripper
 - No modifications to stripper itself; warm rich now enters in between the two stripper beds

- ION's Multi-component Liquid Analyzer (MLA): available on rich or lean solvent
 - Proprietary, continuous, and detailed measurement of solvent composition



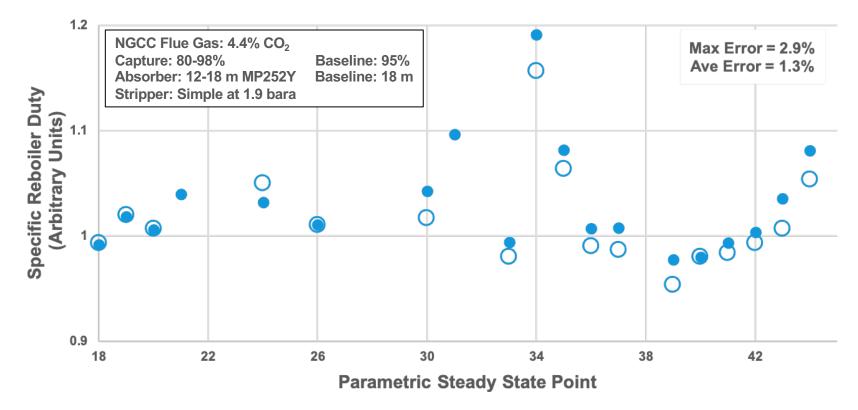
PARAMETRIC TESTING AT NGCC CONDITIONS

First 60 Days of Operation

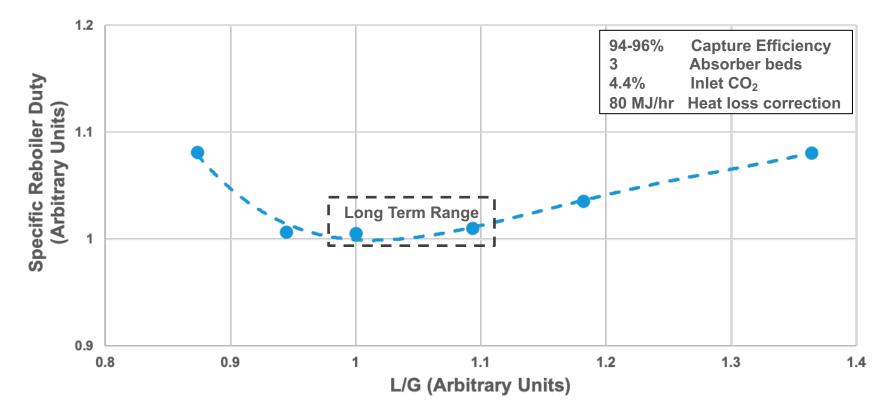

70 Different Parametric Settings

© ION CLEAN ENERGY

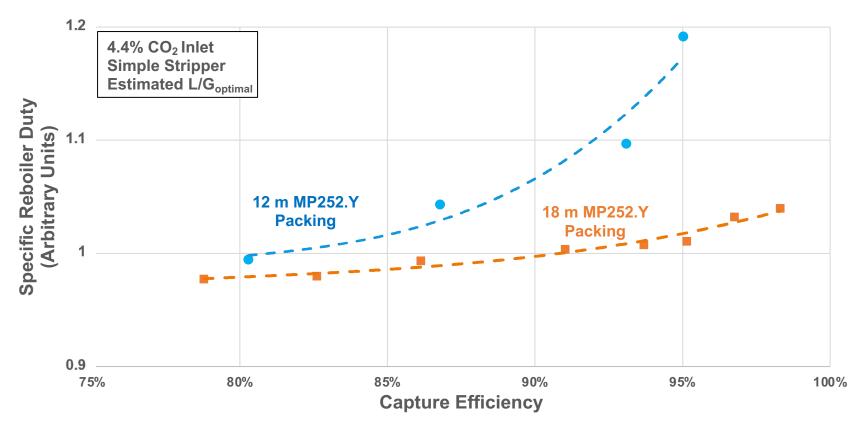
Recalibrating Steam Flowmeter

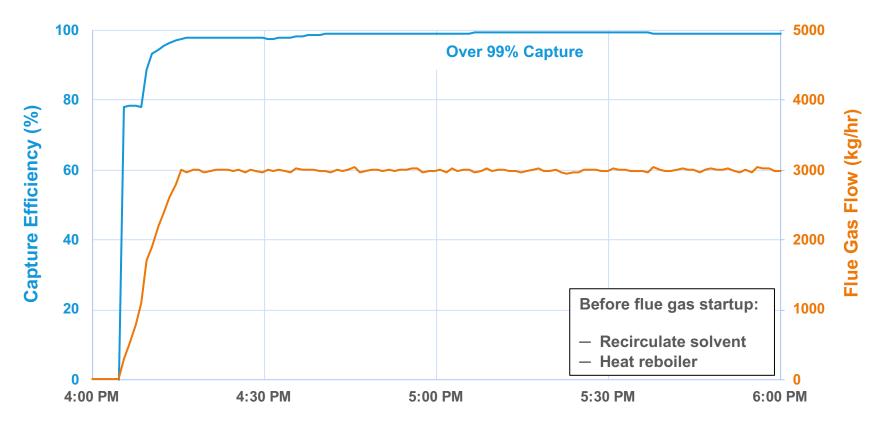


ProTreat® Model Validation



Preliminary

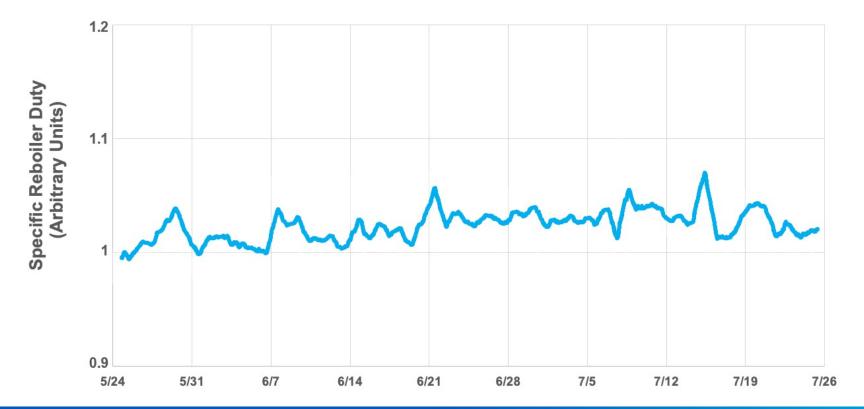

Simple Stripper SRD at 95% Capture


Variable Capture Efficiency with Simple Stripper

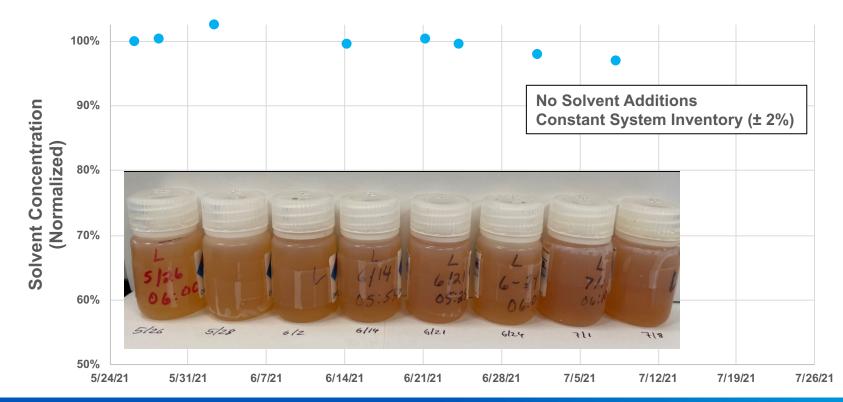
Capture-Ready Warm Start

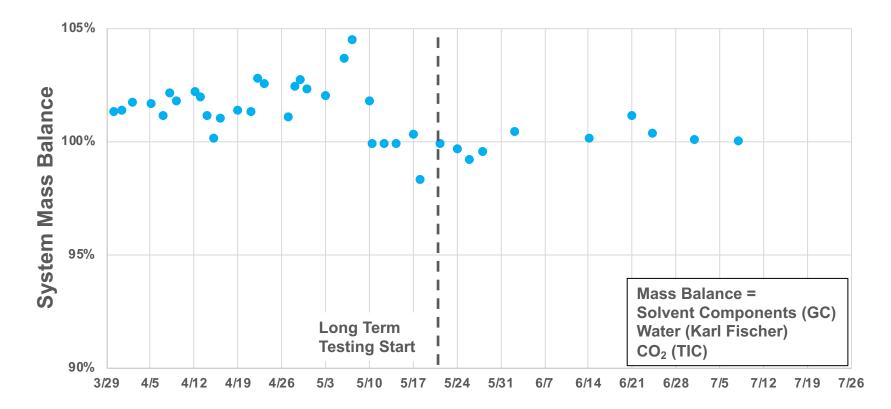
LONG-TERM TESTING – PRELIMINARY RESULTS

95% Capture for 1500 hours

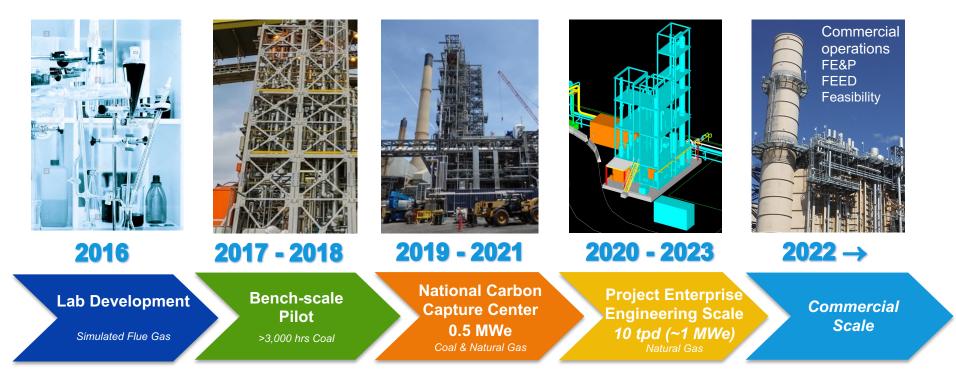


Steam Flow Meter Recalibrations


Stable SRD and Operations


Transformational Stability Preliminary

Overall Mass Balance


ICE-31 DEVELOPMENT PATH

Next Steps in Campaign

- Coal parametric on Simple Stripper
 - Further model validation
- Coal parametric using Advanced Flash Stripper (AFS)
 - Further model validation
 - Improved energy performance over simple stripper
- Coal parametric with Cold Rich Bypass (CRB)
 - Utilize ION process with Advanced Flash Stripper equipment
 - Perform technoeconomic tradeoff for two advanced stripper configurations
- "NGCC" AFS and CRB parametric
- "NGCC" Dynamic Operation and Process Upsets
- "NGCC" and Accelerated Degradation

ION's CO₂ Capture Technology Development – ICE-31

NCCC Team

Department of Energy

Acknowledgement

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FE0031727.

Disclaime

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completaness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Appendix *Organization Chart*

ION Engineering (Lead Institution)

- · Management of scope, schedule and budget of overall project
- · Laboratory work to support solvent property information development
- Develop test plan for 0.6 MWe demonstration
- Supervise NCCC in daily execution of test plan
- Analysis of all campaign and laboratory data
- Complete DOE Deliverables: TEA, Technology Gap Analysis, EH&S Risk Assessment, Technology Maturation Plan, and all other required reporting

National Carbon Capture Center (NCCC) Commonwealth Scientific & Industrial Research Host Site Organisation (CSIRO) Subawardee Host site of 0.6 MWe PCC test facility Preparation of PSTU for test campaign Laboratory work complementary to ION in support of ٠ Support for test plan development & execution solvent property information development Daily execution of test plan Support for ION's test plan development through testing with simulated gas Sargent & Lundy (S&L) Lab analysis support during test campaign & breakdown ٠ Subcontractor product analysis at conclusion of campaign Techno-economic Analysis Development Hellman & Associates **Optimized Gas Treating (OGT)** Subcontractor EH&S Support for test campaign Subcontractor Module development for ProTreat[®] simulation software EH&S Risk Assessment

Project Schedule – April 2021 update *To be confirmed with DOE (NCE)*

													E	Budg	et P	erio	d 1											
A	oollo Project Schedule	1	2	3	4	5	6	; 7	7	8	9	10	11	1	2	13	14	15	16	17	1 1	8	19	20	21	22	23	24
·		Jun-19	Jul-19	Aug-	19 Sep-	19 Oct-1	9 Nov	-19 Dec	-19 J	Jan-20	Feb-20	Mar-2	0 Apr-20	0 May		Oct-20 Feb-21	Mar-2	Apr-2	May-2	1 Jun-2	21 Ju	-21	Aug-21	Sep-21	Oct-21	Nov-21	Dec-21	Jan-22
Task 1 Project Manag	gement	M 2				N	13	M 1			M	5	м	4 M 6-	8, 12												M 9-11	M 13-17
Task 2 Laboratory Sc	ale Evaluations																											
2.1 Lab-work for IC	CE-31 Properties																											
2.2 Develop ICE-3	1 Process Model in ProTreat®																											
2.3 Thermal and C	Dxidative Stability Study																											
2.4 Process Deve	lopment Facility (PDF) Operation																											
Task 3 Host Site Prep	paration and Test Plan Development																										П	
3.1 Develop Camp	paign Test Plan																										П	
3.2 Campaign rela	ated Environment, Health, and Safety (EH&S)																											
3.3 Host Site Prep	aration																											
Task 4 Field Testing a	at 0.6 MWe PCC Plant																										\square	
4.1 0.6 MWe PCC	Operation Phase I														1													
4.2 Analysis and F	Phase I Data Evaluation																											
4.3 0.6 MWe PCC	Operation Phase II																											
4.4 Data Evaluatio	n																											
4.4 Decommissio	ning																											
Task 5 Analytical Rep	porting for DOE Metrics																											
5.1 Process Mode	I Validation																										П	
5.2 Techno-econo	mic Analysis (TEA)																											
5.3 State Point Da	ta Table																											
5.4 Technology Ga	ap Analysis																											
5.5 Environmental	Health and Safety Risk Assessment																											
5.6 Technology Ma	aturation Plan																											
5.7 Final Reporting	g																											
Overall Tasl	K	Sch	edule	due	to C	OVID-	19 D	elay																				
Subtask						ng & e				t																		