
Critical Component/Technology Gap in 21st Century Power Plant Gasification Based Poly-generation: Advanced Ceramic Membranes/Modules for Ultra Efficient H₂ Production/CO₂ Capture for Coal-Based Poly-generation Plants DE-FE0031930

- Dr. Richard J. Ciora, Jr., Media and Process Technology Inc., Pittsburgh, PA
- Professor Theo Tsotsis, University of Southern California, Los Angeles, CA

Media and Process Technology Inc.

Project Overview


<u>Program:</u> DOE/FE "Critical Components for 21st Century Power Plants of the Future" <u>Funding:</u> Project Budget/Cost Share: \$2.38M (DOE: \$1.91M; Cost Share: \$0.47M) <u>Overall Project Performance Dates:</u> October 1, 2020 - September 30, 2023 (36 months) <u>Project Participants:</u>

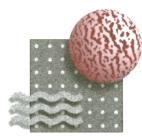
- Media and Process Technology Inc...Membrane manufacturer/supplier and technology developer (POC: Dr. Richard Ciora)
- University of Southern California....Membrane and system modeling (POC: Professor Theo Tsotsis)

Overall Project Objectives:

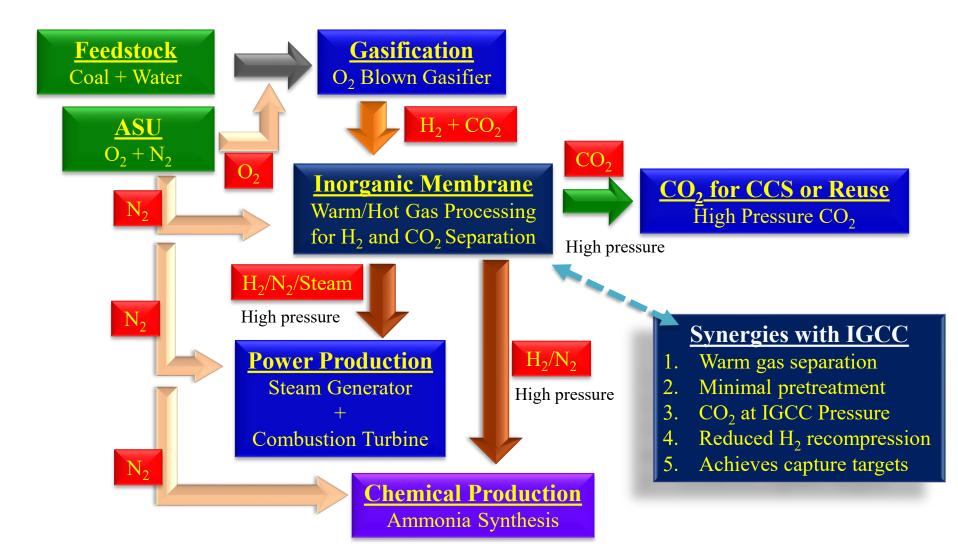
Perform R&D to enable emerging inorganic membrane technology in Poly-generation based precombustion CO_2 capture.

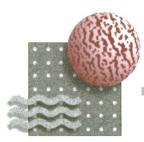
- (i) Develop & fabricate a full ceramic multiple tube bundle w/ permeate purge capability.
- (ii) Fabricate multiple bundle housing/module as a pre-commercial scale unit.

Project Objectives and Technical Program Summary

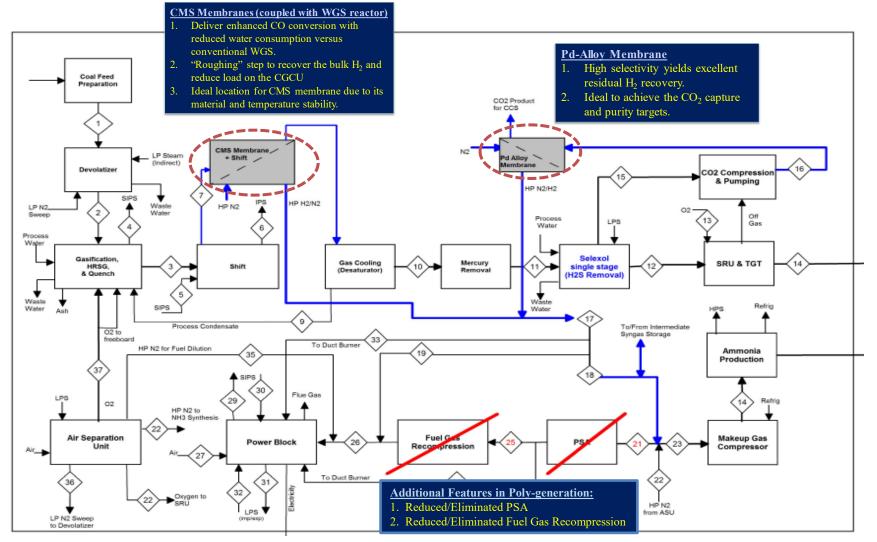

Primary Objective

Develop a permeate sweep/purge capable full ceramic multiple tube membrane bundle and multi-bundle module.


- ✓ This capability represents a Critical Technology Gap for advanced inorganic membranes in pre-combustion CO₂ capture.
- \checkmark This capability is required to achieve the >30% COE cost savings target over baseline.
- ✓ Target operating conditions of 200 to >350°C and at up to 800 psig.


Technical Program Summary

- > Develop and fabricate a permeate purgeable multiple tube bundle
- > Design and fabricate a multiple bundle housing with appropriate seals
- Conduct a range of challenge tests to demonstrate bundle/housing stability
- Conduct long term performance stability testing at the target operating conditions
- Develop CFD model to predict membrane performance and inform module configuration
- Update the DSMP TEA for Poly-generation



Poly-generation: Inorganic Membrane Technology Role

Poly-generation: Dual Stage Membrane Process (DSMP)

Technology Point State: Candle-filter Configured Multi-tube Bundle

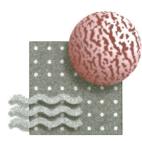
CMS for H₂ Recovery in "Dirty" Gas Systems

Na-A and Na-Y Zeolite for Azeotrope Dehydration

MFI Zeolite for Gas Separation

MPT Ceramic Membrane Supports Offer

- Wide range of membranes technologies
- Multiple tube bundles >
- High temperature (>500°C) >
- High pressure (>1,000psig) >
- Stepping stone from the laboratory to \triangleright field/commercial scales.



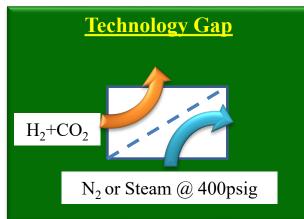
Pd-Alloy for H₂ Recovery

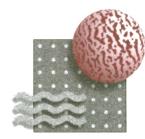
Candle-filter

Simple Scale-up **Simple Module** "Stress-free" - Rut -

Project Motivation: "Technology Gap"

Implementation of the DSMP in Poly-generation


MPT Technology Baseline and Advantages


- ✓ Enabled "Bench-scale" Inorganic Membrane Technology Demonstration
- ✓ Scale-up included CMS, Pd-alloy, and Zeolite-based membranes
- ✓ Confirmed High Performance in Pre-combustion Capture
- ✓ Demonstrated Highly Stable in Hot/Warm "Live" Gas Processing (ie: NCCC)
- ✓ TEA Show the DSMP Process Can Deliver Target CO₂ Capture Efficiency >90% Capture at ~95% Purity

What's Missing: The Technology Gap

Required: Permeate Sweep/Purgeable Membrane and Module

- > Enables meeting of the COE reduction targets
- Simplifies and streamlines module design
- Reduces system cost and footprint

Project Motivation: TEA Impact/Advantages

DSMP Economics in Pre-combustion CO₂ Capture

DSMP TEA Development Based Upon:

- 1. Actual membrane performance results with
- 2. Multiple tube membrane bundles in
- 3. Live gas testing at the NCCC in the
- 4. Actual/expected operating conditions.

DSMP Achieves DOE CO₂ Targets

>90% capture at ~95% purity

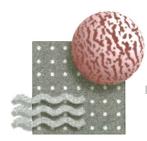
Poly-generation: Additional Impacts Reduce/eliminate PSA in NH₃ Synthesis Minimize "fuel gas" recompression

		Net	Net	Total	COE	COE	Cost CO ₂	Cost CO ₂
		Power	Increase	COE	Increase	Reduction	Capture	Capture
		Output	v. B5B	no T&S	v. B5 A	v. B5B	v. B5 A ¹	v. B5B
Case	Comments	[MWe]	[MWe]	[\$/MWhr]	[\$/MWhr]	[%]	[\$/tonne]	[% Reduction]
MPT Dual Stage Membrane Pro	ocess Base Cases							
MPT Case: B5M-HP.S1	Candle Filter Bundle Configuration	560	17	129.9	27.3	16.9%	33.2	14.7%
MPTCase: B5M-HP.Purgeable	Permeate Purgeable Bundle Configuratio	582	39	120.3	17.7	46.0%	21.5	44.6%
IGCC Base Cases								
IGCC Base Case (B5A)	IGCC with No CO2 Capture	622	NA	102.6	Rece	NA	Base	NA
IGCC Base Case with CCS (B5B)	IGCC with 2-Stage Selexol	543	Base	135.4	32.8	Base	38.9	Base

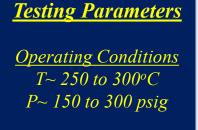
DOE/NETL Report 2015/1727 - Cost and Performance Baseline for Fossil Energy Plants, Volume 1b Rev 2b, July 31, 2015

Technology Background

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678



Advanced Inorganic Molecular Sieving Membranes



Package into Multiple Tube Bundle

MPT 57-tube Bundle (Carbon Molecular Sieve Membrane)

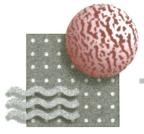
Precombustion: Advanced Inorganic Membranes

Pretreatment Particulate trap only, no other gas cleanup.

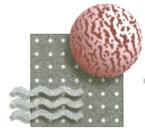
Permeance [GPU]

 $\frac{Composition}{H_2 \sim 10 \text{ to } 30\%}$ $CO \sim 10\%$ $CO_2 \sim 10\%$ $N_2, H_2O \sim Balance$

<u>Trace Contaminants</u> $NH_3 \sim 1,000ppm$ Sulfur Species ~ 1,000ppmHCl, HCN, Naphthalenes/Tars, etc.


Carbon Molecular Sieve (CMS) Membrane Background Performance Stability

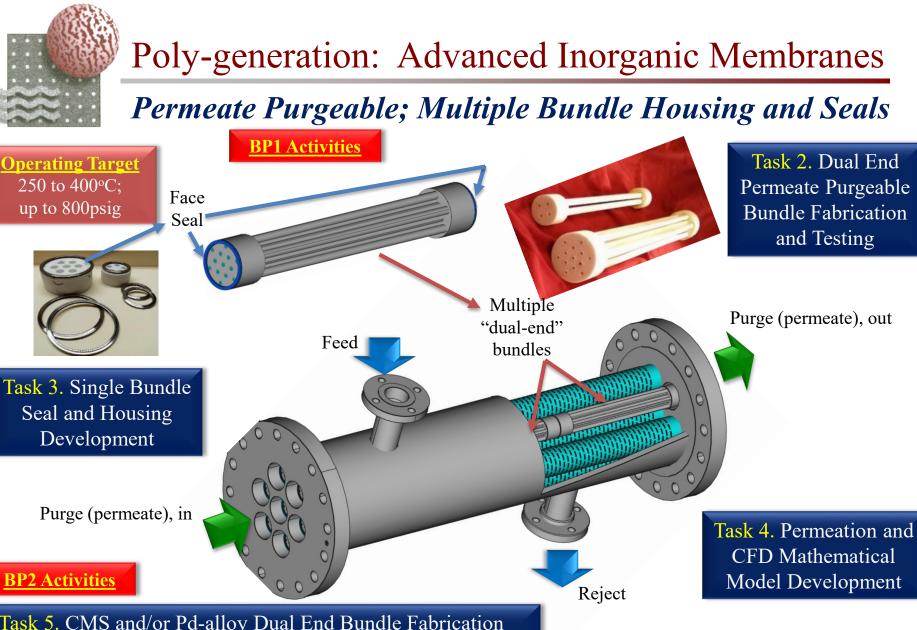
Project Technical Scope and Approach



Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

Project Tasks and Schedule

			Budget Period 1						Budget Period 2					
	-)/1/2)/2023	
Tasks and Milestones	Start Date	End Date	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11) 12
Task 1.0 - Project Management and Planning	10/1/2020	9/30/2023												
Task 2.0 - Fabricate Permeate Purgeable Full Ceramic	10/1/2020	3/31/2022												
Multi-tubular Bundles														
													⊢	
Task 3.0 - Design and Fabricate Housing for Single Bundles	4/1/2021	3/31/2022												
														
Task 4.0 - Conduct Mathematical and CFD Modeling	10/1/2020	3/31/2022												
Subtask 4.1 - Conduct CFD Modeling on Module and Internal Configuration	4/1/2021	9/30/2021												
Subtask 4.2 - Conduct Mathematical Modeling and Optimization	10/1/2020	3/31/2022											-	
of Purgeable Membranes														
Subtask 4.3 - Technical Support for CFD & Separation Performance	4/1/2022	9/30/2023												
Modeling														
Task 5.0 - Prepare CMS and Pd Alloy Membrane	4/1/2022	12/31/2022												
Tubes and Full-scale Bundles	7/1/2022	12/31/2022												
rubes and run searc Dunares														
Task 6.0 – Evaluate the Operating Envelope of Module	4/1/2022	6/30/2022												
Comprising Two Bundles in Housing														
Task 7.0 - Test Prototype Full-scale Multiple Bundle Module	7/1/2022	6/31/2023												
Task 8.0 - Update the TEA to Confirm Cost Savings	4/1/2023	9/30/2023												
and Prepare the Final Report														

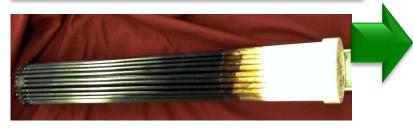

Technical Approach: Milestones-Go/No-Go: Overall

<u>BP1</u>

- Fabricate 3 to 4 multiple tube permeate purgeable full ceramic bundles.
- Target size is 1.5" up to 4" diameter; 20 to 38" length.
- Leak free/mechanically stable on thermal cycle challenge testing in "free" and "constrained" (in housing) configurations.
- Fabricate the first operational housing for purgeable single membrane bundles.
- Bundle leak rate <1 GPU N_2 at 250°C and 400psig up to 400°C and 800psig.
- CFD modeling of the dual ended bundles incorporating feed flow distribution, mixed gas permeate take-off, permeate purge, and recommendations for housing design.

<u>BP2</u>

- Fabricate of up to 200 CMS and/or Pd-alloy membranes with target H_2/N_2 selectivity of >100 and >1,000, respectively.
- Fabricate up to four purgeable multiple tube bundles from CMS and/or Pd-alloy tubes at a minimum diameter of 1.5"; 20 to 38" length.
- Bundles meet the N_2 leak rate spec of <1 and 5 GPU (CMS and Pd-alloy).
- Demonstrate bundle gas separation performance at the membrane operating conditions (250°C and/or 350°C, respectively, for the CMS and Pd-alloy bundles).
- Completed long term mechanical/performance stability testing of 6 to 12 months with the multiple tube permeate purgeable bundles at the target operating conditions.
- Updated the DSMP TEA for Poly-generation.



Task 5. CMS and/or Pd-alloy Dual End Bundle Fabrication
Task 6. Single Bundle Performance Evaluation
Task 7. Multiple Bundle Housing Development and Testing
Task 8. Process Flow Diagram and TEA Update

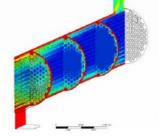
Technical Approach: Concepts and Milestones: BP1

Task 2. Dual End Bundle DevelopmentMilestone d:Dense tube bundles (9/21).Milestone e:Porous tube bundles (3/22).

Project Activities/Milestones

- 1.5" to 4" diameter (4 to 80+ tube)
- Thermal cycle stability to 400°C
- Constrained/mechanically loaded
 T/C stability (in housing)

Task 3. Housing and Seal Development <u>Milestone f:</u> Single bundle housing (6/21). <u>Milestone g:</u> Multiple bundle housing. (3/22)



Task 4. Mathematical Model DevelopmentMilestone h:Single bundle housing.Milestone i:Multiple bundle housing.

Project Activities/Milestones

- Transition to face seal design
- Multiple bundles in series
- Add multiple bundles in parallel

Project Activities/Milestones

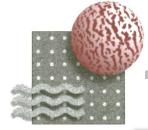
- Feed flow distribution, multiple tube
- Incorporate permeation/separation
- Multiple bundle in series/parallel

Project Progress and Status

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

Task 2. Fabricate Permeate Purgeable Dual End Bundles

Task Objectives


- *Fabricate multiple tube dual end bundles*
- **Scale-up from 3-tube 10" long prototype**
- ✓ *Target diameter is 1" up to 4" bundles*
 - *Nominally 7- and 80-tube, respectively.*
 - Target length is >20 to 38"
- / Initial focus Dense Tubes
- Transition to Porous Tubes
- ✓ BP2 follow-up with CMS and/or Pd-alloy

<u>Results Summary</u>

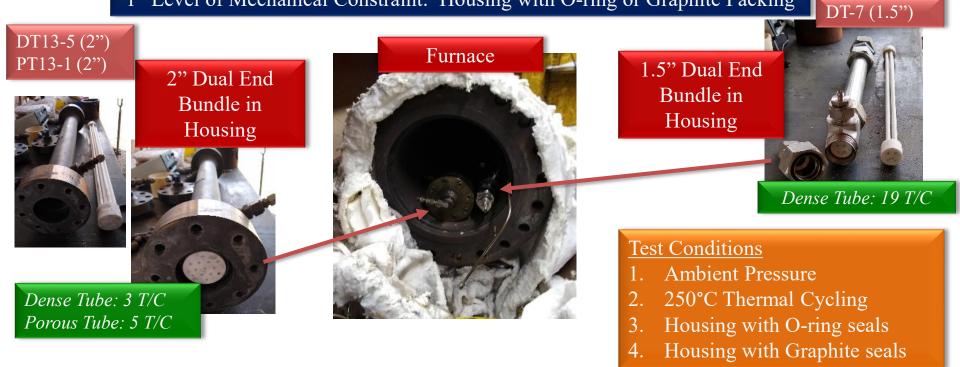
- 1. Dense and porous tube dual ended bundles.
- 2. 1.5 to 3" diameter at up to 38" length
- 3. No bundle failure on thermal cycle testing in free and constrained configurations.

Milestone Progress

- 1. Minimum bundle target 1.5" x 38" completed.
- 2. 3" prototype underway (4" to follow).
- 3. Porous tube bundle transition underway; fabricated and challenge tested.
- 4. Bundle leak rates <<1 GPU (unmeasurable).

Task 2. Performance Test Permeate Purgeable Bundles

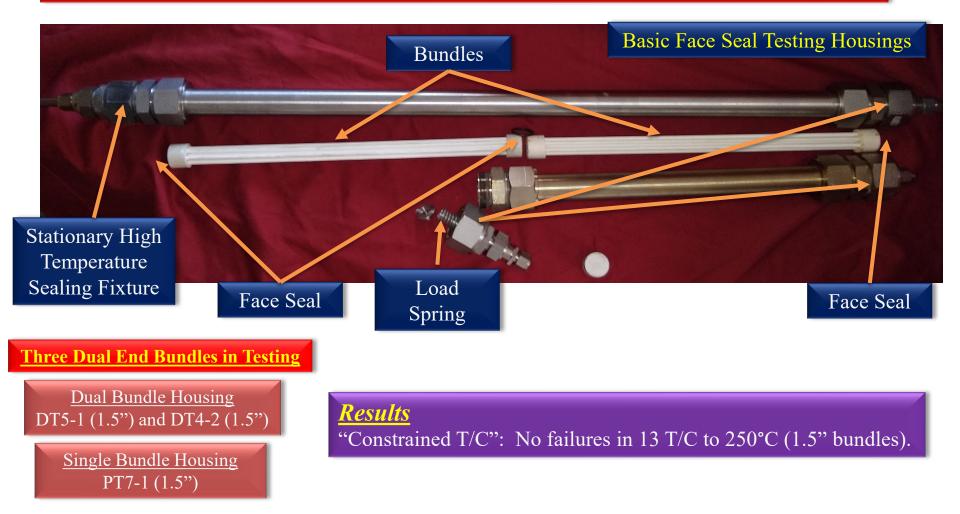
Thermal Cycle Challenge Testing with and without Housing


Bundle ID	Description	Cycles to 250°C	Cycles to 400°C	Cycles to 450°C
** DT5-1 (1.5")	5x 8.6mm tube; 18"	22[6]	ual Bundle	25
DT5-2 (1.5")	5x 8.6mm tube; 38"	0	Face Seal 63	2
DT4-1 (1.5")	4x 8.6mm; 32"	8	Housing 40	23
** DT4-2 (1.5")	5x 8.6mm tube; 18"	0 <mark>[12][6]</mark>	43	<u>Results</u>
** DT4-7 (1.5")	5x 8.6mm tube; 18"	8 [19]	Single 43	"Free T/C": No failures
DT4-7 (1.5")	5x 8.6mm tube; 12"		ndle Face 34	in >400 T/C
** PT7-1 (1.5")	7x 5.7mm tube; 18"	13 <mark>0</mark> Sea	al Housing 46	25
PT4-1 (1.5")	4x 8.6mm tube; 18"	N/A	Single 20	
PT7-3 (1.5")	7x 5.7mm tube; 18"		Bundle 7	
DT13-1 (2")	13x 8.6mm tube; 12"	4	adial Seal Housing	22
DT13-2 (2")	13x 8.6mm tube; 12"	N/A	28	9
**DT13-5 (2")	13x 8.6mm tube; 28"	3 [3]		
**PT13-1 (2")	13x 8.6mm tube; 28"	4 [5]	** Transitioned to "	constrained" challenge testing.
DT: Dense Tube PT: Porous Tube				

Task 2. Performance Test Permeate Purgeable Bundles Radial Seal Housings

Dual Ended Full Bundle Housing (Single Bundle) in Radial Seal Configuration

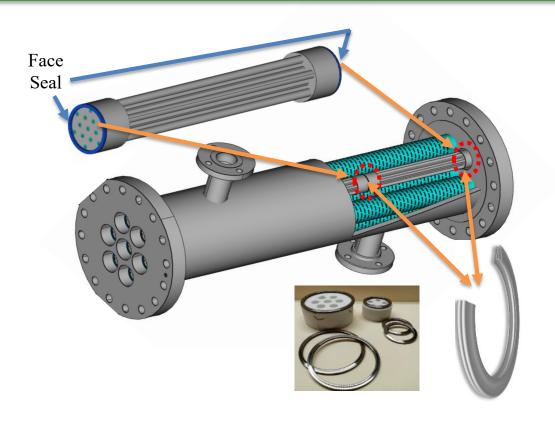
<u>Thermal Cycle Challenge w/Mechanical Constraint</u> 1st Level of Mechanical Constraint: Housing with O-ring or Graphite Packing


Results

"Constrained T/C": No bundle failures in 27 thermal cycle to 250°C (2" and 1.5" bundles).

Task 2. Performance Test Permeate Purgeable Bundles Face Seal Housings

Dual Ended Full Bundle Housing (Single Bundle and Dual Bundle) in Face Seal Configuration

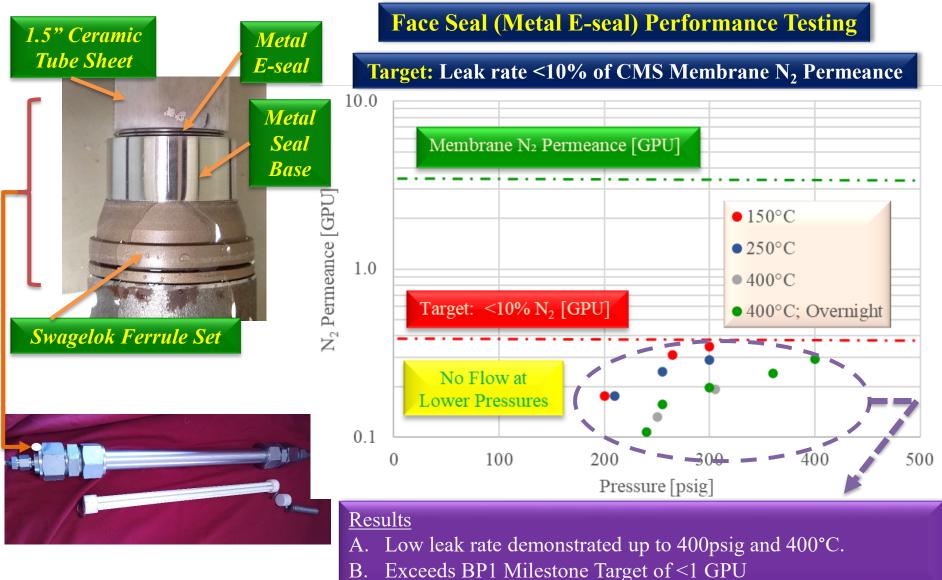

Task 3. Purge Capable Module and Seals Design and Fabrication

Milestone f. Fabricate first prototype housing for single dual end bundle. *Milestone g.* Fabricate multiple bundle housing with bundle interconnects.

Two Fundamental Housing Design Concerns/Restrictions

Minimize stress between the ceramic bundle and steel housing.

Develop bundle interconnects that maintain axial compression.


Solution #1

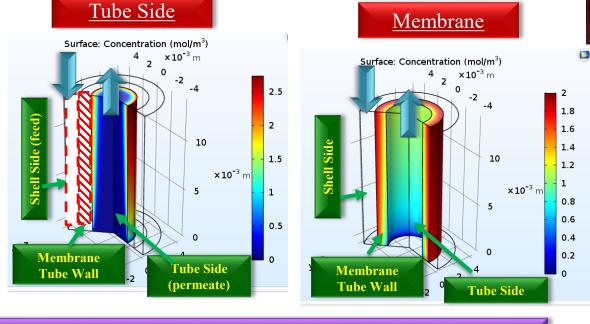
- **Transition to Face Seal**
- <u>Jet Seal E-series Metallic Seal</u>
- ✓ Liquid/gas sealing
- ✓ High cyclic deflection
- ✓ 700°C, 10,000 psi
- ✓ Bundles in compression
- ✓ Higher packing density v. radial seal

<u>Solution #2</u> <u>"Floating" or U-bend Header</u> ✓ Minimize bundle to module stress

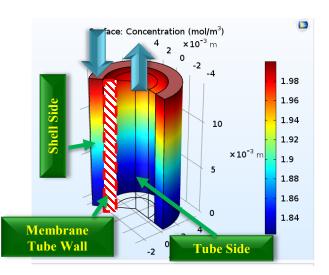
Task 3. Purge Capable Module and Seals Design and Fabrication

Task 4. Conduct Mathematical and CFD Modeling

<u>Task Objectives</u>


Develop CFD model to simulate feed flow distribution
 Incorporate CFD model into gas separation models
 Use modeling to inform bundle/module configuration

Target Performance


Verify mixed gas separation with model predictions

Previous Work: CMS Membrane Pre-combustion Capture Baffles for Feed Flow Distribution

Shell Side

<u>Results</u>

A. Single tube velocity and concentration profiles modeled.

Project Technical Program Future Testing and Commercialization

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

Technical Approach: BP2 and Beyond

Future Work

In this Project (BP2)...

- Gas Separation Membranes. Extend the current technical success to high performance gas separation membranes (Carbon Molecular Sieve; Pd-alloy)
- Multiple Bundle Module. Demonstrate a high packing density permeate purgeable module targeting multiple bundles in series and parallel configuration in a single housing.
- Performance Evaluation. Short and long term performance evaluation of the full module in single bundle and multiple bundle configurations.
- Process Design and TEA Updates. Complete an update of the Poly-generation process design and TEA incorporating the new module configuration.

Next Project...

- ✤ Performance testing in actual gas stream of a multiple bundle module.
- ✤ For example, University of Kentucky CAER facility coal/biomiass gasifier.

Scale-up Potential...

This project addresses a key commercialization hurdle ("Technology Gap") faced by novel inorganic membranes... a scale-up pathway that is cost effective and technically sound.

Commercial Potential...

✓ Potential commercial application areas are wide ranging for inorganic membranes and include H₂ production and separation; chemical synthesis in membrane reactors; solvent dehydration via pervaporation/vapor permeation; solvent recovery and separation via nanofiltration.

Project Summary

Project Driver

- Pre-combustion Capture. Inorganic membranes have been demonstrated to be highly effective for and ideally suited to for pre-combustion capture.
- \blacktriangleright Capture Basics. >90% CO₂ Capture at ~95% Purity
- ➢ Economics. >40% Reduction in COE and COC versus baseline.
- Poly-generation. DSMP modified IGCC/Polygen well suited to co-production of NH₃. Minimize PSA and Fuel Gas recompression.
- Technology Gap. Permeate purge capability with N₂ or steam is assumed in various TEA developments but not available in practice.

<u>Solution</u>

- ✤ Dual End Full Ceramic Purgeable Multiple Tube Membrane Bundles
- ✤ Face seals for high packing density in multiple bundle series/parallel configuration.

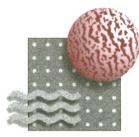
Key Results

- □ Demonstrated multiple tube permeate purgeable bundle fabrication.
- □ Multiple tube bundles mechanically stable in various challenge tests to 450°C.
- \Box Metallic face seals show leaks rate <10% of the membrane N₂ permeance (400°C; 400psig).

<u>Take-away</u>

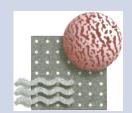
- ✓ Inorganic membranes have tremendous promise in a wide range of applications, yet remain benchtop novelties due to a lack of a support for commercial scale-up.
- ✓ The ceramic bundle/module under development in this project solves this "Technology Gap".

Questions?



Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

Appendix

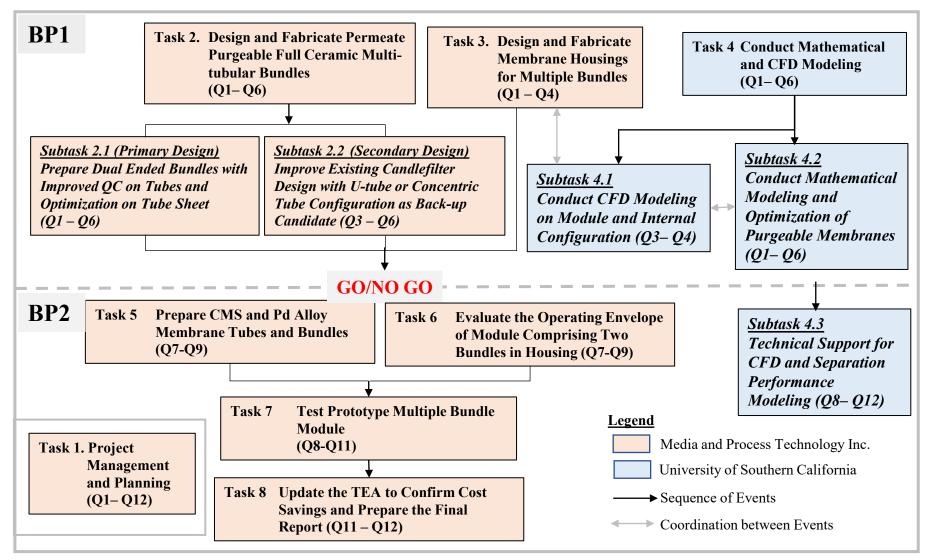

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

Project Team

Team Member | CV/Capabilities

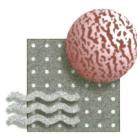
Responsibilities

MPT has nearly 30 years of experience in	
inorganic membrane materials and process	Project management;
development in high temperature, high pressure,	membrane bundle
aggressvive chemicals gas and liquid separations.	and housing
Since 2003 MPT has been a commercial	development;
manufacturer and supplier of ceramic membrane	performance testing;
technology into a wide range of ultrafiltration	TEA update
applications.	



Professor Tsotsis at USC has over 40 years of experience in membrane and adsorbent preparation/characterization, reaction engineering, reactor design, and the modeling of transport in complex porous media. He is the author/co-author of over two hundred and fifty technical publications and several book chapters.

CFD model development and bundle/module performance verification; TEA update


Project Structure...Team Member Roles and Tasks

Project Timeline and Milestones: BP1

						Peri	od 1						
							1/20	22		ID	Verification Method		
Tasks and Milestones		End Date	Q1	Q2	Q3	Q4	Q5	Q6		ID	vermeation method		
Task 1.0 - Project Management and Planning	10/1/2020	9/30/2023								а	PMP file		
										1	Presentation file/report		
Milestones										b	documents		
-a Updated PMP finalized			•										
-b Kickoff meeting, annual/final reports completed			•			•							
-c Technology Maturation Plan completed.			•	•						c	TMP file		
Task 2.0 - Fabricate Permeate Purgeable Full Ceramic	10/1/2020	3/31/2022											
Multi-tubular Bundles											Photographs and test data		
Milestones										1	01		
- d Complete the preparation of the dual ended full ceramic dense tube bur	ndle					•				d	of bundles included in		
- e Complete the preparation of the dual ended full ceramic porous tube bu	undle							•			quarterly report		
Task 3.0 - Design and Fabricate Housing for Single Bundles	4/1/2021	3/31/2022									Photographs and test data		
Milestones										е	of bundles included in		
- f Fabricate first prototype single bundle housing with dual end seal desig	n.				•					C			
- g Fabricate the first prototype multiple bundle housing incorporating											quarterly report		
the dual end seals and connector components								•			Schematics, photographs,		
Task 4.0 - Conduct Mathematical and CFD Modeling	10/1/2020	3/31/2022								f	description of module in		
										_	quarterly report		
Subtask 4.1 - Conduct CFD Modeling on Module and Internal Configuration	4/1/2021	9/30/2021											
Subtask 4.2 - Conduct Mathematical Modeling and Optimization	10/1/2020	3/31/2022									Schematics, photographs,		
of Purgeable Membranes										g	description of module in		
Subtask 4.3 - Technical Support for CFD & Separation Performance		9/30/2023								-	quarterly report		
Modeling													
Milestones										h	Results reported in the		
- h Complete the CFD modeling and experimental verification of single						•				ш	quarterly report		
dual end bundle in mixed gas permeance with permeate sweep									L				

Project Timeline and Milestones: BP2

Budget Period 2 4/1/2022 - 9/30/2023								ID	Verification Method
Tasks and Milestones	Start Date	End Date	Q7	Q8	Q9	Q10	0Q11Q12		
Task 4.0 - Conduct Mathematical and CFD Modeling									
Subtask 4.3 - Technical Support for CFD & Separation Performance	4/1/2022	9/30/2023							Results reported in
Modeling								i	the quarterly
Milestones									report
- i Complete the CFD modeling of the dual ended bundle and multiple bun	dle						•		
module in U-bend and permeate sweep modes with flow management r	ecommendat	ions							
Task 5.0 - Prepare CMS and Pd Alloy Membrane	4/1/2022	12/31/2022							Reported in the
Tubes and Full-scale Bundles								j	quarterly report
Milestones									-1
- j Prepare up to 200 CMS and/or Pd (-alloy) membranes (30" long) and					•	•			Photographs and
pot into bundles								1	test results
								k	reported in
Task 6.0 – Evaluate the Operating Envelope of Module	4/1/2022	6/30/2022							quarterly report.
Comprising Two Bundles in Housing									Results reported in
Milestones								1	-
- k Complete the shakedown and performance testing of			•	•				1	the quarterly
the two-bundle modules and housing									report
									Results reported in
Task 7.0 - Test Prototype Full-scale Multiple Bundle Module	7/1/2022	6/31/2023						m	the quarterly
Milestones									report
- 1 Complete the testing of the 3-4 bundles as base modular unit							•		1
	4/1/2023	0 10 0 10 0 0 0							Quarterly Report
Task 8.0 - Update the TEA to Confirm Cost Savings		9/30/2023						QI	files
and Prepare the Final Report									
Milestones								FF	Draft Final Report
- m Update TEA for the new module design and process configuration									file

Project Risk Management

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

Risk Management: Technical

	Ris	k Rating									
Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy							
	(Low,	Med, Hig	gh)								
Technical/Scope Risks											
Mechanical failure of the dual end bundle due to internal thermal or other stress.	Med	High	Med	Extensive and wide-ranging program is proposed to overcome this problem. Previous experience with full ceramic bundles provides the materials and fabrication knowledge base to transition to the dual ended purgeable membrane bundle. A back-up solution with a smaller diameter bundle is offered.							
Mechanical failure of the dual end bundle due to external stresses associated with module seals and thermal expansion mismatch.	Med	High	Med	A range of flexible seal and housing configurations is proposed to overcome this problem. No back-up solution is necessary since parts suggested are commercial products, which have been practiced under similar operating conditions.							
Seal lifetime problems and premature failure due to gasifier off-gas contaminants.	Low	Med	Med	Work closely with seal manufacturers who have extensive experience in a wide range of aggressive operating conditions and a range of materials options. Identify problem contaminants and materials solutions via accelerated challenge testing.							
Non-ideal flow and feed maldistribution in the proposed housing	Low	Low	Low	CFD modeling to be used to recommend baffle type and location. Significant practical commercial experience in gas separation and heat exchanger design can be incorporated. A back-up solution is offered which comprised enhanced baffling in the presence of armored ceramic bundles.							
Residual sulfur components expected from the Selexol (one stage) impact significantly Pd- Ag performance.	Low	Med	Low	Move to more sulfur resistant alloy such as Pd-Cu or others. A back-up solution is offered, which include fixed bed warm gas cleanup for residual sulfur removal as a guard bed for the Pd membrane, or installation of additional membranes to compensate for the permeance loss.							

Risk Management: Other

	Risk Ra	ting					
Perceived Risk	Probabili	ity Impa	ct Overall	Mitigation/Response Strategy			
	(Low, N	led, Higł	ı)				
Financial, Cost/Schedule Risks:							
Budgetary issues, i.e., not enough funds to complete a certain Task	Low	Low	Low	Seek DOE guidance and approval for shifting funds from less critical tasks and consolidating certain activities			
Pd Membrane production budget constraints due to metal cost and/or low on-spec ratio	Low	Med	Low	Reduce the number of tubes required via increased bundle tube spacing and/or reduced bundle diameter.			
Delays in delivery of equipment/parts from vendors	Low	Med	Med	Improve coordination with vendors. Seek alternate vendors.			
Resource Risks:							
Equipment malfunction	Low	Low	Low	Wide range of back-up systems available at MPT. Significant experience in system construction if additional back-up is needed.			
Personnel performance issues	Low	Low	Low	Address/remedy performance issues. Replace personnel, if need arises. Most employees have been with MPT for >10years.			
Overspending of the allocated budget for the proposed application	Low	Low	Low	Our monthly accounting report will alert us to overspending problems. MPT has significant experience in these projects and very reliable cost estimating practices.			
ES&H Risks:	•	•	•				
ES&H issues develop	Low	High	Low	Identify problem(s) causes and take remedial actions. Retrain personnel, if human factor is involved.			
Management and Planning and Overs	sight Risks	:					
Lack of effective and timely coordination to get the tasks completed in time according to project needs.	Low	High	Low	Weekly project review meetings and daily project coordination is practiced. MPT is the only contractor on this project.			
IP ownership issues develop	Low	Low	Low	MPT will own all IP			