

Delivering over 90% CO₂ capture – learnings from modelling and pilot plant studies

<u>Mai Bui</u>,^{1,2} Patrick Brandl,^{1,2} David Danaci,³ Jason P. Hallett,³ Camill Petit,³ Niall Mac Dowell^{1,2,*}

Centre for Environmental Policy, Imperial College London
 Centre for Process Systems Engineering, Imperial College London
 Department of Chemical Engineering, Imperial College London
 m.bui@imperial.ac.uk
 niall@imperial.ac.uk

Technology development & delivery

Process modelling Develop understanding of the impacts on cost and technical performance Process modelling in gPROMS and MATLAB MATLAB PROMS 500 MW NGCC 500 MW NGCC 50 % EGR 500 MW high-rank PC 500 MW low-rank PC **Operating Cost Fraction (%)** 500 MW biomass 1 MMtpa cement 400 Indirect capture via 5 5 6 5 5 5 5 5 5 5 5 5 5 5 * 1 MMtpa steel 25 300 negative emissions 90% capture rate 99% capture rate Min~Max Median 20 200 TAC in \$/ 125 15 100 -100 100 10 75 12:48 50 26 18 10 18 26 Ŭ0 2 3 Yoo. [% moi Yco, [%mail Mtpa_{cc}

Demonstration

Demonstrates feasibility and develop understanding of plant operation

Modelling – steady state

International Journal of Greenhouse Gas Control 105 (2021) 103239

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Beyond 90% capture: Possible, but at what cost?

Patrick Brandl^{a, c}, Mai Bui^{a, c}, Jason P. Hallett^b, Niall Mac Dowell^{a, c, *}

^a Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK ^b Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK ^c Centre for Environmental Policy, Imperial College London, South Kensington Campus, London SW7 1NE, UK

pubs.acs.org/est

En Route to Zero Emissions for Power and Industry with Amine-Based Post-combustion Capture

David Danaci,^{||} Mai Bui,^{||} Camille Petit,* and Niall Mac Dowell*

Cite This: https://doi.org/10.1021/acs.est.0c07261

Demonstration tests – steady state & dynamic

International Journal of Greenhouse Gas Control 93 (2020) 102879

Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO_2 capture plant

Mai Bui^{a,b}, Nina E. Flø^c, Thomas de Cazenove^c, Niall Mac Dowell^{a,b,*}

^a Centre for Process Systems Engineering, Imperial College London, South Kensington, London SW7 2AZ UK ^b Centres for Environmental Policy, Imperial College London, South Kensington, London SW7 1NA UK ^c Technology Centre Mongstad (TCM), 5954 Mongstad Norway

Start-up and shutdown protocol for power stations with CO_2 capture

(under review)

Article

History of carbon capture and storage (CCS)

Imperial College London

Feron et al. evaluate Baes Jr. et al. at Oak Barchas reports about combined power and Steinberg et al. **Ridge National Lab** the Kerr-McGee/ABB Absorption-based capture plant for gas publish report series publish first work on Lummus Crest and coal at 90% and CCS. Assume 90%_{cap}. including technotechnology for a range of 95%cap, and 99%cap. economic analysis CO_2 capture flue gases all with 90% cap. Assume 90% Marchetti describes Steinberg et al. Mores et al. design for the first time the technology was **CANSOLV** achieves Sander states from Brookhaven the capture unit for concept of CCS. capture rates Nat. Lab. begin capture rates Albanese and Steinberg combined cycle Assumes 50% and between 85% can patented in 1930. work on process 85% can - 95% can compare capture and 95%_{cap} power plants for Jiang et al. reach 90% can from concentrated design. Assume technologies at 50% and 85% can - 95% can. negative emissions depending on flue flue gas 90% and 90% cap. Also analyse by co-firing coal gas composition R. Bottoms* and Garðarsdóttir et impact of capture rate with biomass and Allen et al. file Rump et al. al. analyse impact on generic separation 99%_{cap}. Hendriks et al. compare analyse the supply Abu-Zahra et al. Although studies for patent of scale and CO₃ process. post-combustion of CO, for EOR. present technoclaiming CO₂ composition on capture for NGCC, coal -Assume 90% cap. economic evaluation capture solvents consider different investment cost fired, and IGCC for 80% and 90% and for Sweden. assuming 90%can. 95% and 99% and applications and solvents, most 1930 1975 1977 1978 1980 1981 2016 2018 2019 2020 studies have assumed a CO_2 Herzog et al. Conference Conference: The Yagi et al. and Leci UK commits to capture rate of techno-Global engineering legally binding net-Nordhaus* and Goldthorpe Mustacchi et al. Horn and Steinberg economically Greenhouse response to zero target by 2050 evaluate the process publishes "Can we 90%. analyse seawater describe the first assesses CO. global change. Problem performance and cost control carbon capture. State oxyfuel process capture MIT, USA Daytona Beach dioxide?" for chemical solvents 95% cap and 99% cap assuming 90% can Hirata et al. report technologies at 90% about reaching near-zero assuming 90%, by using the KM CDR™ Where did this process for coal power. Flø et al. analyses the Conference: 1120 t_{co2}/d capture Conference: CO. dynamic behaviour of a Interaction of Energy plant at natural gas reduction and removal post-combustion capture assumption come and Climate Change. fired flue gas Measures of the next unit and its impact on Munster, Germany. conditions starts century?, Laxenberg, capture rate and cost from? operation. Up to Austria * don't mention capture rates 98% ran possible.

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). Beyond 90% capture: Possible, but at what cost? *International Journal of Greenhouse Gas Control*, 105, 103239.

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). Beyond 90% capture: Possible, but at what cost? *International Journal of Greenhouse Gas Control*, 105, 103239.

Imperial College London

Emission sources vary in size & CO₂ concentration

Application	Flow rate [kg/s]	У _{СО2} [% _{mol}]
500 MW NGCC	791	4.0
500 MW NGCC 50% Exhaust Gas Recycle (EGR)	401	8.2
500 MW high-rank coal	503	11.7
500 MW low-rank coal	1077	12.5
500 MW biomass	503	14.4
1 MMtpa cement	162	18.6
1 MMtpa steel	164	23.2

Capture cost: Effect of plant scale

- 500 MW NGCC
- △ 500 MW NGCC 50 % EGR
- 500 MW high-rank PC
- 500 MW low-rank PC
- ▷ 500 MW biomass
- 1 MMtpa cement
- ☆ 1 MMtpa steel

Economies of scale effect apparent once gas flow >10 kg/s.

Lower capture costs (tCO2) at higher gas CO_2 concentration.

Minor difference in capture cost trends for 90% vs 99% capture. However, capture costs for 99% capture is slightly higher.

Imperial College

London

Danaci, D., Bui, M., Petit, C. & Mac Dowell, N. (2021). *Environmental Science & Technology*. 7 DOI: 10.1021/acs.est.0c07261

Imperial College London

CCGT: Effect of capture rate on cost

Natural gas-fired CCGT power plant

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). Beyond 90% capture: Possible, but at what cost? *International Journal of Greenhouse Gas Control*, 105, 103239.

Effect of CO₂ concentration on costs

Assuming constant flue gas flow rate 500 kg/s

Capital costs: mainly absorber cost, doubles at 99% capture. Absolute reboiler duty and amine circulation rate increases with higher gas CO_2 content, thus requiring more HX area.

Imperial College

London

Operating costs: Mainly steam costs which increase with gas CO_2 concentration and capture rate.

9

Balancing costs: >90% capture vs CO₂ removal

Imperial College London

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). Beyond 90% capture: Possible, but at what cost? *International Journal of Greenhouse Gas Control*, 105, 103239.

10

Figure adapted from Fuss, S., et al. (2018). Environmental Research Letters, 13 (6), 063002. Minx, J. C., et al. (2018). Environmental Research Letters, 13 (6), 063001.

In a net-zero emissions future, residual CO₂

Impact of investment & tax credits

Imperial College London

The impact of an investment credit (e.g., §48A) lessens when there is access to cheap capital (e.g., low CRF).

An investment credit is of greater benefit to projects dealing with flue gases that have lower CO_2 concentration (e.g., gas-power) compared to concentrated sources of the same size.

For CO₂ capture from concentrated point sources (e.g., $y_{CO2} = 30 \text{ mol}\%$), combining §48A with the §45Q tax credit* is close to being economically feasible under realistic CRF scenarios, i.e., 12%.

* This study assumed \$50/tCO2, but current proposals in Congress could boost 45Q as high as \$175/t

CRF 12% corresponds to 11% interest rate and annuity period of 25 years

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). International Journal of Greenhouse Gas Control, 105, 103239.

11

Required reductions in CAPEX & OPEX

Imperial College London

In order for the TAC to break-even with a $50/tCO_2$ 45Q tax credit at 99% capture rate:

- Gas-fired power CCS needs 70% reduction in both OPEX and CAPEX
- Coal-fired power CCS needs a 25% reduction in OPEX and 68% reduction in CAPEX

This study was based on a conventional process using 30 wt% MEA.

In addition to financial incentives, cost reductions could be achieved with advanced solvents in modern process topology & design.

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). Beyond 90% capture: Possible, but at what cost? *International Journal of Greenhouse Gas Control*, 105, 103239.

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). *IJGGC*, 105, 103239. Danaci, D., Bui, M., Petit, C. & Mac Dowell, N. (2021). DOI: 10.1021/acs.est.0c07261

13

Bui, M., Flø, N. E., de Cazenove, T., Mac Dowell, N., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

Flexible operation of CO₂ capture plants

Electricity grids with high levels of intermittent renewables will require dispatchable low carbon electricity.

Power plants with CCS provides greater flexibility.

Improves economic performance of system.

We have studied the effects of flexible operation on CO₂ capture performance.

Flexible operation of a demonstrationscale CO₂ capture plant

Imperial College London

CHP mode 4 mol% CO_2 gas Captures 80 t_{CO2}/day

RCC mode 12 mol% CO₂ gas Captures 275 t_{CO2}/day

Equinor oil refinery (not shown)

http://cdn3.spiegel.de/images/image-349556-860_poster_16x9-ygkk-349556.jpg

TCM CO₂ capture facility, Mongstad Norway

2017 tests used 30 wt% MEA

2020 tests used Cesar-1, containing 27 wt% AMP+ 13 wt% PZ in June, and 26 wt% AMP+ 9.5 wt% PZ in November

Imperial College London

There are also strategies useful for operating the capture plant in a "load following" manner.

Previous MEA test campaign at TCM was conducted in July 2017.

This studied the performance of the TCM plant during three flexible operation tests:

- Step-change of steam flow
- Time-varying solvent
 regeneration
- Variable ramp rate

Flexible operation of the CO₂ capture plant

Imperial College London

Off-peak electricity prices:

Solvent is regenerated, reducing power output \rightarrow expect lower flue gas flow rates.

Peak electricity prices: accumulate CO_2 in the amine. Power output increases, burning more fuel \rightarrow higher flue gas flow.

Note: Operating more flexibly means the steady state capture rate cannot provide an indication of residual CO_2 emissions. Need to calculate cumulative amounts.

Time-varying solvent regeneration

Time varying solvent regeneration

Bui, M., Flø, N. E., de Cazenove, T., Mac Dowell, N., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

Off-peak: solvent regenerated and lean CO_2 loading reduced.

Reboiler temperature: 124.1 °C CO₂ capture rate: 89–97% Lean CO₂ loading: 0.16 mol_{CO2}/mol_{MEA}

Peak: CO_2 is "stored" in solvent and lean CO_2 loading increases.

Reboiler temperature: 109.5 °C **CO₂ capture rate:** 14.5% **Lean CO₂ loading:** 0.48 mol_{CO2}/mol_{MEA}

Rich CO₂ Loading: 0.52–0.53 mol_{CO2}/mol_{MEA}

Reboiler duty: 3.93–4.11 MJ/kg CO₂

<u>Cumulative</u> CO₂ capture rate: 66.5%

For max cumulative CO₂ capture, we need to optimise the duration between modes

Performance during start-up and shut down

Rise in the frequency of start-up and shut down cycles will be expected with higher levels of intermittent renewables.

If this significantly increases CO₂ emissions, it would undermine the value proposition of CCS.

In 2020, we studied the effect of start-up & shut down on CO_2 emissions at TCM.

Studying the following: (i) hot vs cold start-up, (ii) timing of steam availability (conventional vs preheat vs delayed), (iii) solvent inventory capacity, (iv) start-up solvent loading/composition.

Effect of process dynamics of the capture performance

Hot start-up and shut down with 53 m³ solvent inventory

As shown previously, balancing the duration of capture modes is important in ensure capture requirements are met. In the above test, the plant cumulatively captured 90% of the feed CO_2 , despite online capture rate varying from 99% to 83%, then increasing to 90% and 96%.

Improving capture performance during start-up

Bui, M. & Mac Dowell, N., under review, Start-up and shutdown protocol for power stations with CO₂ capture, IEAGHG report.

23

Improving capture performance during start-up

Conventional start-up: Reboiler is not at the set-point temperature at the time FG starts, causing the CO_2 capture rate to drop from 99.8% to 44.6%, before increasing again to 87%.

Start-up with preheating: Reboiler reaches set-point temperature much quicker. The CO_2 capture rate remains stable, starting at 99.3% before reduces slightly to 92.5%.

Conclusions: Delivering over 90% CO₂ capture

Process modelling and plant demonstrations show that high CO₂ capture rates of 95 to 99% are technically and economically feasible.

The modelling work shows CO_2 capture costs for different applications and illustrates the effect of plant scale (i.e., flue gas flow rate), flue gas CO_2 concentration and capture rate.

Economies of scale has a clear impact at >10 kg/s gas flow rates, also opportunities for lower capture costs for industrial capture applications with higher gas CO_2 concentration.

When capture rate increases from 90% to 99%, the main contribution to the increase in capture costs is the larger absorber column, with a minor increase in steam costs.

A balanced portfolio of investment credits and tax credits will likely be required. There is also the potential for further cost reductions through using advanced solvents, modern plant topology and process intensification.

The demonstration studies at TCM shows the importance of considering cumulative capture rate, particularly during flexible operation. We also demonstrated different operating strategies that can be used to achieve higher CO₂ capture rates during flexible operation, e.g., preheating before start-up, lower loading upon start-up, optimising duration of time periods.

Future considerations: Delivering over 90% CO₂ capture

In countries with net-zero targets, higher CO_2 capture rates of 95% or higher will be essential to reduce the burden on CO_2 removal from the atmosphere (may be more expensive and limited in scale).

We have mainly focused on increasing CO₂ capture rates of MEA-based absorption for post-combustion capture applications, i.e., power plants and industry.

We also need a systems approach to reducing CO_2 emissions. The supply chain CO_2 emissions associated with the fuel (e.g., natural gas, coal, biomass) will also have an impact on the actual CO_2 reduction potential and will be an important consideration for further work, e.g., integrate LCA with process modelling.

Future work could explore the potential for maximising CO_2 capture rate in other non-combustion applications for CO_2 capture processes, e.g., hydrogen production.

The studies on flexible operation demonstrate that there is a temporal element that needs to be accounted for when determining CO_2 emissions and cumulative CO_2 capture %. This will likely have an impact on regulation and policy for CO_2 emissions from power and industry.