Phase II / III Review: Large Pilot Testing of Linde-BASF Advanced Post-Combustion CO₂ Capture Technology at a Coal-Fired Power Plant (FE-0031581)

Kevin C OBrien, PhD Director, Illinois Sustainable Technology Center Director, Illinois State Water Survey Prairie Research Institute University of Illinois at Urbana-Champaign Stephanie Brownstein Assistant Research Engineer, Illinois Sustainable Technology Center University of Illinois at Urbana-Champaign

DOE/NETL 2021 Carbon Management and Oil & Gas Research Project Review Meeting (Aug. 12, 2021)

Affiliated

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PROJECT OVERVIEW

Phase II Funding: \$3,736,684 DOE: \$2,988,3 20% Cost Share: \$748,325 Work Contemporal Sept. 1, 2019 – Jan. 15, 2021 Phase in Completed: May 31, 2021

Phase III Funding: \$67,000,000 DOE: \$47,000,000 Cost Share: \$20,000,000 (supplied by the State of Illinois) Phase III Complete: May 2026

City Water, Light and Power (CWLP) Springfield, IL

PROJECT OBJECTIVES:

Overall: Design, construct, and operate a 10 MW capture system based on the Linde / BASF advanced amine-based, post-combustion carbon dioxide (CO₂) capture technology at CWLP Dallman Unit 4, Springfield, IL.

Phase III: Build / Operate 10 MW capture system and compare performance with results from 1.5 MW testing at the NCCC. If successful, keep system for evaluating future capture and utilization testing technologies.

Part of Plan for Decarbonization of the Grid

WHY THE INVESTMENT BY THE STATE OF ILLINOIS?

Illinois: A Confluence of Geology, Technology, Government Investment

Creates unique advantages for the state of Illinois

- Ability to store CO₂ has provided a major motivator for large capture pilots and large-scale capture demonstration projects at CO₂ emitters within the state
- Unique geology of Illinois a major asset for CO₂ storage
- 45Q has been a major incentive a means to monetize CO₂
- US DOE funding has enabled the maturation of capture technologies that can be deployed at locations throughout the state
- State of Illinois' support with major cost share investment
- Elected officials at all levels interested in the job creation and regional economic benefits of these projects

Capture Studies Coordinated with Geological Storage Studies

CarbonSAFE Phase III: Geological Storage

- Able to connect to • CarbonSAFE's Phase III Illinois Geological Storage Corridor
- Sufficient CO, geological storage capacity near the host sites
- All sites within 100 miles ٠ of storage site
- Immediate access to Interstate highway

Prairie Research Institute

Illinois: Knowledge Base for Carbon Capture & Storage

Concentration of natural resources and intellectual capital

8

CITY, WATER, LIGHT AND POWER

Build / Operate: Largest Capture R&D Pilot in the World (10 MW)

CWLP Location and Configuration

Traditional PC plant

System Boundaries for Project

Follow-on projects can connect to existing DOE projects for storage and utilization

City Water, Light and Power (CWLP)

Water and power supplier for City of Springfield

ILLINOIS Prairie Research Institute

Capture Plant and Tie-Ins to Plant – Birds-Eye View

TRL of Capture System Ready for 10 MW Scale

TECHNICAL BACKGROUND

Linde / BASF Milestones

ILLINOIS Prairie Research Institute

Linde / BASF Solvent Based Capture System

Reduced capital costs / energy costs

- Optimized BASF OASE[®] blue solvent
- Efficient CO₂ capture from low-pressure sources
- Longer solvent stability
- Lower solvent circulation rate

Notable Linde process improvements

(F, E) Dry bed water wash design to minimize solvent losses
(J) Stripper regeneration at 3.4 bars reducing CO₂ compressor cost and power consumption
(K) Advanced Stripper Interstage Heater to reduce regenerator steam consumption.

Affiliated Engineer

Scale-up Factors at Each Stage for Development

DEVELOPMENT SCALE	YEAR	SIZE (MWe)	SCALE-UP FACTOR*	DEVELOPMENT STRAGETY
Lab scale; mini pilot	2004	0.015	n/a	Solvent selection and proof-of-concept under laboratory conditions
Bench scale: Niederaussem	2009	0.45	30	Solvent performance validation; emissions control testing under realistic conditions
Small pilot: NCCC	2016	1 to 1.5	3	Validation of unique process features aimed at reducing CAPEX – i.e. high capacity structured packing, gravity-driven absorber inter-stage cooler, and unique reboiler design
Proposed large-scale pilot	2021-2026	10 to 12	7 to 8	Equipment performance validation at commercially relevant scale (i.e. uniform gas/liquid distribution in absorber and inter-stage heating in the stripper)
First commercial plant	2025-2030	200 to 600	20 to 50	At scale demonstration of complete CCS value chain (capture, compression, transport, and storage/ utilization)
nth commercial plant	2030+	600+	3 to 5	Safe, reliable, and economic operation in compliance with regulations

*Assumes PCC capacity of 20 tpd captured CO_2 for every 1 MWe (flue gas 13% CO_2 concentration)

ILLINOIS Prairie Research Institute

TRL Improvement of Key Subsystems

Subsystem	Current TRL	Comments	Expected TRL
Absorber and Stripper Columns	6	At larger column diameters, the importance of uniform liquid and gas distribution and proper design of feed inlets and gas liquid offtakes become critical to achieve predicted pe1fonnance of the target CO ₂ capture rate and minimum regeneration energy. In addition, a proper build and install strategy is required in order to achieve the lowest cost option at scale.	7(9)*
Heat Exchangers and Reboiler	6	Plate-fin exchangers have been used in the pilot plants and will be scaled up for the large pilot. The large pilot reboiler design will be selected as appropriate for the advanced stripper design configuration.	7
Stripper Heat Integration and Recovery	Prior to the lean-rich heat exchange, the large pilot will incorporationripper Heategration andRecovery66677899<		7
Materials of Construction 6 Several materials including ca fiberglass reinforced plastic (F in-liners have been tested and the large pilot will be specified plant analysis.		Several materials including carbon steel, different stainless-steel options, fiberglass reinforced plastic (FRP) and concrete sections with polypropylene in-liners have been tested and evaluated in the pilot plants. The materials for the large pilot will be specified based on the results from the current pilot plant analysis.	7
Emission Control	Emission Control 6 Solvent emissions minimization well below air emissions compliance limits is a key success factor for commercial implementation of a solvent-based post-combustion capture system. Assessment of key operating parameters and flue gas aerosol reduction options will be validated at the proposed pilot.		7
Solvent Management	6	Scale-up involves management of a much larger inventory of solvent, introducing complexity in the logistics of delivery and storage. Experience from other amine-based commercial systems, such as intermediate solvent storage and delivery, and solvent reclamation and recycling, will be considered for the large pilot.	7

* TRL 9 based on Linde's related experience in building up to ~12m diameter columns for other commercial applications. This has been validated in other commercial-scale aiming operations and will be applied in the large pilot.

Attractive Techno-Economics for Linde / BASF Process

Baseline case: DOE-NETL supercritical PC power plants

Parameter	DOE NETL Case B12A	DOE NETL Case B12B	Linde BASF LB1	Linde BASF SIH	Linde BASF VHR
Description	No CO ₂ Capture	90% Capture w/ Cansolv PCC process	90% Capture w/OASE® Blue	90% Capture w/ OASE [®] Blue and SIH	90% Capture w/ OASE Blue [®] SIH, and WHR
Net Power Output (MWe)	550	550	550	550	550
Gross Power Output (MWe)	580	642	630.4	629.3	626.3
Coal Flow Rate (tonne/hr)	179.2	224.8	221.9	218.5	210
Net HHV plant efficiency (%)	40.70%	32.50%	32.97%	33.40%	34.73%
Total Overnight Cost (\$2011) (\$/MT)	\$1,379	\$2,384	\$1,970	\$1,950	\$1,921
Cost of CO ₂ captured with T&S (\$/MT)*	N/A	\$68.00	\$53.58	\$52.71	\$51.31
Cost of CO_2 captured without T&S (\$/MT)*	N/A	\$58.00	\$43.58	\$42.71	\$41.31
COE (\$/MWh) with T&S*	\$82.30	\$142.80	\$127.97	\$126.50	\$123.63
PCC specific reboiler duty (MJ/kg CO ₂)	N/A	2.48	2.60	2.30	1.50

Case implemented in Phase III

ILLINOIS Prairie Research Institute

Future Trends: Designing for Variation in Plant Loads

Capture system design accommodates this variation in gross generation

Just like the DOE vision for future power plants, over the 18-month period the plant demonstrated a consistent variation in gross generation between the limits of 100 MW and 225 MW

- Increase in CO₂ concentration in the flue gas with increasing load on the power plant
- Inverse relationship between O₂ concentration and increasing load
- May conceivably happen when the plant operates at lower capacities, without adjusting the air intake to the turbine
- Flue gas is effectively diluted as the ratio of combustion air to combustion fuel in higher at lower power generation

Phase III: Evaluating Linde/BASF Technology vs. DOE Power Plant Vision

Grouping	Qualities in Grouping	Previous Evaluations	Evaluations During Phase III
Flexibility & Efficiency	 (10) Integrated carbon capture, +90% capture (1) High overall plant efficiency (3) Capable of high ramp rates and minimum loads 	• 1 MWe at NCCC (<u>1.B.4)</u>	 Measurements made during long-term testing Updating of TEA Host site load varies, capture system ability to follow will be demonstrated (<u>1.A.5</u>)
CAPEX and OPEX	(6) Reduced design, construction, and commissioning schedules(7) Enhanced maintenance features	 Outlined in previous TEA developed for 1 MWe 	 Tracked during build / operate of Phase III Updated TEA will address
Environmental Footprint	(2) Near-zero emissions (5) Minimized water consumption	 1 MWe at NCCC (<u>1.B.4</u>) NEPA addressed these issues 	Permits require measurements during testing
Changes to Upstream Processes of Power Plant	 (4) Integration with energy storage (8) Integration with coal upgrading (9) Capable of natural gas co-firing 	 Capture technology integrated with energy storage in 21st Century Power Plant (DE-FE0031995) and H₂ energy storage DE-AR0001310 Testing at small sizes were conducted with various types of coal Included in natural gas fired systems studies 	n/a

ILLINOIS Prairie Research Institute

HAZOP Review – Recommendations & Responses

Recommendation	Mitigation and Response Strategy	
Check safety measures upstream	Host site confirmed there is no foreseen likelihood of a negative pressure situation, the controls will be designed to shut down the pilot plant and dampers in the event of an upset	
Check maximum possible pressure from boundary limit	Confirmed maximum pressure that could occur at the battery limit from the wet ESP if ID fans are on with no recycle pumps	
Heat tracing required for low points in OSBL flue gas lines	Project will make every attempt to design OSBL flue gas lines at a constant slope with no low points – if low points must exist, they will include heat traced drain lines	
Check maximum possible temperature at boundary limit	Confirmed maximum design temperature that could occur at the battery limit from the wet ESP and declared PPE requirements	
Check maximum allowable amine emissions per local regulations	Confirmed maximum permissible amine emissions (categorized as VOC/VOM) based on Dallman 4 air permit limit and emission test results	

Linde/BASF Capture Unit 3D rendering

Looking down from power plant

Looking back towards power plant

ILLINOIS Prairie Research Institute

Transitioning from Phase II to Phase III

PROJECT MANAGEMENT & RISK MANAGEMENT

Prairie Research Institute: Addressing Societal Issues

Structure creates ability to address the many factors for large projects

Phase III: Project Management Structure

Consistent team throughout all phases

Project Tasks

BP1 for Phase III = BP3 overall for project

Task #	Task	BP		
1.0	Project Management and Planning	All BP		
2.0	Baseline Techno-Economic Analysis (TEA)			
3.0	Detailed Engineering and Specifications	BP3		
4.0	Permit Application			
5.0	Construction and Execution Plan			
6.0	Equipment Procurement			
7.0	Site Preparation and Foundations Installation			
8.0	Plant Construction and Installation	DP4		
9.0	Commissioning and Test Plan			
10.0	Start-up and Operations			
11.0	Operations and Testing			
12.0	Analysis of Test Campaign Results	DDE		
13.0	Updated Techno-Economic Analysis (TEA)			
14.0	Update of EH&S Assessment, TMP, and TCP			
15.0	Dismantling and Removal			

IILLINOIS Prairie Research Institute

Task vs. Responsible Organization

WBS #	WBS Title		Linde	ACS	BASF
1	Project Management and Planning	Х	Х	Х	х
2	Baseline TEA		Х		
3	Detailed Engineering and Specifications		Х	Х	х
4	Permit Application	Х			
5	Construction and Execution Plan		Х	Х	
6	Equipment Procurement		Х	Х	
7	Site Preparation and Foundations Installation	Х		Х	
8	Plant Construction and Installation		Х	Х	
9	Commissioning and Test Plan		Х		
10	Start-up and Operations	Х	Х		Х
11	Operations and Testing		Х		х
12	Analysis of Test Campaign Results		Х		
13	Updated TEA		Х		
14	Update of EH&S Assessment, TMP, and TCP		Х		
15	Dismantling and Removal		Х		

Milestones for Phase III

BP1 for Phase III = BP3 overall for project

Budget Period	Task Number	Description	Verification Method
3	1	Updated Project Management Plan	Project Management Plan file
3	1	Phase III Kickoff Meeting	Presentation file
3	4	Permitting Issuances Complete	Quarterly RPPR file
3	3	Detailed Engineering Complete	Quarterly RPPR file
4	6	Equipment Procurement and Fabrication Complete	Quarterly RPPR file
4	8	Construction & Installation Complete	Quarterly RPPR file
5	10	Commissioning and Pre-Start-up Checks Complete	Quarterly RPPR file
5	10	Steady-State Operations Established	Quarterly RPPR file
5	11	Parametric Testing Complete	Quarterly RPPR file
5	11	Steady-State Testing Complete	Quarterly RPPR file
5	13	Updated TEA	Report file
5	14	Updated EH&S / TMP / TCP	Report file
All	1	Quarterly RPPR report	RPPR files

Prairie Research Institute

ILLINOIS

Transition from Phase II to Phase III – Risk Mitigation

RISK AREAS/FACTORS	RESULTS FROM PHASE II THAT MITIGATE RISKS		
Permitting / Regulatory	 All permitting agencies identified and extensive discussions held with agencies Costs detailed for permits Per instructions of agencies, documents for permit applications prepared and ready to submit Applications informally reviewed Submit applications in BP1 of Phase III 		
Cost share	 Cost share obtained from state and schedule developed for disbursing funds Cost share disbursement schedule designed based on procurement and construction schedule 		
Interconnection of Utilities from host site to capture plant	 Detailed design of ISBL and OSBL slightly enhanced in Phase II to facilitate ease of interconnection On-going communication between ISBL EPC (Linde) and OSBL EPC (ACS) enables understanding of responsibilities Resolved means to design OSBL in order to avoid obstacles presented by existing infrastructure at host site On-going communication with host sites assured volumes and quality of utilities are available for hook-up 		
Procurement	 Large equipment has bid ready documents developed during Phase II for both ISBL and OSBL Identification of long-lead time procurements Discussions with solvent supplier (BASF) on volume needs, timing, and logistics Procurement schedule developed to assure project is not delayed 		
Labor costs for construction	 Union labor required for construction and operation of the plant Engaged with labor unions to educate them on project and understand rates/concerns Strong support from unions for construction and operation Rates established and built into construction and operation costs Qualifications required of contractors who can perform work at host site established Potential local contractors (electrical, plumbing, welding, etc.) identified 		
Operational costs to run capture plant	 Working with host site, operational costs (i.e. extra coal, steam, etc.) established Host site will be compensated for extra costs incurred during operation of the capture facility Avoids the need to approach rate payers and seek reimbursement from them for costs of operation 		
Variation in flue gas composition with variation in plant load	 Characterized flue gas based on load on host site CO₂ and O₂ levels varied with load Established design to accommodate variations in plant load 		
Cost overruns during construction	- Pre-engineering of major equipment in Phase II to improve the quality of bids received from vendors		

<u>NEPA</u>

A NEPA working team was formed consisting of the NEPA contractor, ISTC, Linde, CWLP, and NETL/DOE

- NETL and DOE approved the Final EA and FONSI
- Created an Inadvertent Discoveries Plan based on feedback from regional Nations

PERMITTING

A working team for permitting issues was formed consisting of representatives from ISTC, CWLP, and the Illinois Environmental Protection Agency (IEPA)

- Stormwater a construction permit will be submitted by project contractor; stormwater from project area covered by site NDPES permit
- Air emissions emission values have been calculated; construction/operating permit will be managed as a "Modification to the Facility"
- Hazardous waste a permit is not required; solvent contaminated waste will be tested to determine hazardous status and dispose appropriately
- Wastewater 3rd party wastewater assessment complete; initial treatment design and costing complete

Job Creation and Environmental Justice Concerns

Important additional study conducted as part of Phase III

- Job Creation study was completed with non-project funds for Phase II
- Examined direct, indirect and induced job creation
- Phase III operation will employee some of plant workers that would have been laid-off due to shut down of older units
- Follow-up job creation study important to compare predicted vs. actual
- Environmental Justice of major interest since Qualified Opportunity Zones (QOZs) present in city of Springfield

Summary and Conclusions

- Legislation at the Federal Level and State Level has stimulated interest in CO₂ capture for both power generation and industrial applications
- US DOE funding for both capture and storage has been critical to stimulate efforts
- Large projects create learnings that cannot be otherwise obtained
- Phase III is an important evaluation of Linde / BASF capture technology
- Phase III viewed as having a great potential to stimulate job formation (direct, indirect, and induced)
- Phase III Environment Justice impact of interest since Qualified Opportunity Zones nearby

Acknowledgements

Organization	Name
Andrew Jones	National Energy Technology Laboratory / US Department of Energy
PJ Becker, Deborah Williams	City, Water, Light & Power (CWLP)
Yongqi Lu, Vinod Patel, Jim Dexter, Jason Dietsch, Les Gioja, Jackie Harden, Scott Prause, Bajio Varghese Kaleeckal, Hafiz Salih, Sebastiano Giardinella	Prairie Research Institute / University of Illinois
Krish Krishnamurthy, Makini Byron, Jason Haley, Lars-Erik Gaertner, Devin Bostick, Tom Rayhill, Matthew Parker	Linde
John Nichols	BASF
David Guth	Affiliated Engineers Inc (AEI)
Greg Larson	Affiliated Construction Services (ACS)

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0031581

