Pilot Testing of a Highly Efficient Pre-combustion Sorbent-based Carbon Capture System (Contract No. DE-FE-0013105)

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Matt Cates Douwe Bruinsma Freya Kugler Jim Dippo

2021 Carbon Management and Oil and Gas Research Project Review Meeting

Point Source Capture — Lab, Bench, and Pilot-Scale Research August 13, 2021

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Summary

UNIVERSITY of CALIFORNIA - IRVINE

Project Duration

- Start Date = January 1, 2014
- End Date = March 31, 2022

Budget

- Project Cost = \$9,929,228
- DOE Share = \$7,943,382
- TDA & its partners = \$1,985,846

- To develop a new sorbent-based precombustion capture technology
- Demonstrate techno-economic viability of the new technology by:

1) Evaluating technical feasibility in 0.1 $\rm MW_{e}$ slipstream tests

2) Carrying out high fidelity process design and engineering analysis

- Major Project Tasks
 - ✓ Sorbent Manufacturing
 - ✓ Long-term cycling tests
 - ✓ Reactor Design
 - ✓ CFD Analysis/PSA cycle optimization
 - ✓ Fabricate a Prototype for Demonstration
 - Evaluations at various sites using coalderived synthesis gas
 - ✓ Techno-economic analysis
 - Decommissioning and Shipping from China

TDA's Sorbent

- TDA's uses a mesoporous carbon with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Net energy loss in sorbent regeneration is similar to Selexol; much higher IGCC efficiency can be achieved due to high temperature CO₂ capture

Favorable material properties

- Pore size is tuned to 10 to 100 A
- Mesopores eliminates diffusion limitations

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354 US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland "Precombustion CO_2 Capture System Using a Regenerable Sorbent"

Integration to the IGCC Power Plant

- Higher mass throughput to gas turbine higher efficiency
- Lower GT temperature Reduced need for HP N₂ dilution hence lower NO_X formation
- Elimination of heat exchangers needed for cooling and re-heating the gas
- Elimination of gray water treatment problem
- Potential for further efficiency improvements via integration with WGS

Operating Conditions

- CO₂ is recovered via combined pressure and concentration swing
 - CO₂ recovery at ~150 psia reduces energy need for CO₂ compression
 - Small steam purge ensures high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants

Primary Focus

- 0.1 MW_e evaluation in a world class IGCC plant to demonstrate full benefits of the technology
- Testing with high pressure gas Demonstrate full operation scheme
 - 8 reactors and all accumulators
 - Utilize product/inert gas purges
 - H₂ recovery/CO₂ purity

Evaluations at various sites using coal-derived syngas

- Field Test #1 at NCCC Air blown gasification
- Field Test #2 at Sinopec Nanhua Petro-chemical Plant, Nanjing, Jiangsu Province, China – Oxygen blown gasification

Nanhua Plant Syngas Supply				
Composition	mol%			
H2	32.493			
СО	0.546			
CO2	24.715			
H2S	0.083			
COS	0			
C1	0.021			
N2	0.128			
AR	0.05			
NH3	0.069			
HCN	0			
HCL	0			
H2O	41.895			
昷度 Temperature, C	265.6			
压力 Pressure, MPaG	4			

National Carbon Capture Center

Sinopec/Yangtzi Chemicals Petrochemical Comple

Slipstream Test Skid - Top View

Field Test Unit Installed at NCCC

Working Capacity of the Sorbent

- A successful 30 day (707 hrs) evaluation was completed at NCCC
 - Design flow at NCCC operating conditions was 1,420 SLPM (50 SCFM)
 - 97.3% capture @ 1,500 SLPM
 - 93% @ 1,800 SLPM
 - 90% @ 2,100 SLPM
- Pressure drop through the gas conditioning skid prevented flowing more than 2,100 SLPM of syngas through the PSA skids

Installation Work at Sinopec

- Because of the delays getting all equipment to site, the test setup had to be moved to a different location in the plant
 - WGS catalyst, transformer, fiber optic cable etc. were procured locally
- An existing super-structure at the new site added complexity to installation
 - Skids were pipe rolled over berm
 - Vessels were loaded manually via socks and buckets

Pilot Plant Installed at Sinopec

Test Results

- Testing started on 8/27/2019 at 21:50 MST
- High syngas flow, high T, low P during start-up to avoid water/tar condensation in the system
- 2500 SLPM Syngas Flow
- ~85% CO₂ removal efficiency
- ~110 kg/hr CO₂ removal rate

Bed Temperatures

DeltaT of ~20-30°C was as predicted in

the CFD simulations at GTI

Parametric Tests

- ~150 hours of testing with over 1,000 adsorption/desorption cycles were carried out using the same T cycle used at NCCC
 - ~86% CO₂ removal efficiency
 - ~110 kg/hr CO₂ removal rate
- While a higher CO₂ adsorption capacity was observed than the evaluations at the NCCC, the removal efficiency were slightly lower than 90% due to the much higher amount of CO₂ that needed to be removed
 - A new cycle sequence was generated with shorter cycle time to switch the bed positions prior to CO₂ breakthrough, but not implemented

Summary of Test Results

flow rates (SLPM)			pressures		Syngas CO ₂				
		(psia)			Concentration				
feed	steam	syngas	CO_2 and	ads	des	bed T	Feed	HP product	CO ₂
		product	steam out			(°C)	(%)	(%)	removed
1,942	600	1,014	1,272	276	61	213	48	13	86%
1,983	1,200	1,486	1,262	298	61	192	45	11	83%
1,953	580	1,029	1,314	293	57	218	45	13	85%
2,174	892	1,185	1,273	304	36	214	47	14	84%
2,659	600	1,062	1,761	246	51	183	45	15	86%
2,648	1,199	1,593	1,513	305	72	225	48	17	78%
2,752	253	2,060	481	298	59	249	37	17	65%
859	129	556	128	134	79	288	46	15	78%

Parameters Varied:

- Syngas Flow = 1500 to 2800 SLPM
- Steam Flow = 200 to 1200 SLPM
- Bed Temperature = 190 to 290°C
- Adsorption Pressure = 130 to 300 psia
- Desorption Pressure = 35 to 80 psia

System Performance:

- 65-86% CO₂ removal efficiency
- Up to 122 kg/hr CO₂ removal rate
- 3X the CO₂ removal rate compared to our tests at NCCC

Decommissioning

All Inter-connects have been disassembled

All plant connections have been disconnected

Sorbent and Catalyst have been unloaded

- Sinopec has completed the extract the rigs from the plant
- The pick-up is scheduled (scheduling of cranes and the crew)
- All used sorbents and catalysts have been removed from their tanks and will be disposed of by Sinopec
- Due to the international shipment bottleneck, our shipment is waitlisted, with the expectation of shipping the units in couple of months

Sorbent Life Tests

	Synthesis	Simulated	Steam				
	Gas	Gas	Purge				
Temperature	200°C	200°C	200°C				
Pressure	500 psig	200-500 psig	50-300 psig				
	Composition						
H_2	42.8%	53.4%	50.0%				
CO ₂	30.0%*	30.0%	-				
H ₂ O	26.6%	26.6%	50.0%+				
CO	0.6%	-	-				

Long-term cycling of the scaled-up sorbent has been completed with stable performance over 60,000 cycles

* adjusted for purge with 100% steam at 150 psia

CFD Model Tuning

- Working with GTI, we developed a CFD model to support reactor design
- The model was tuned using the data from 1 kW and 0.1 MW systems evaluated at Wabash River IGCC Plant and NCCC field tests
- CFD simulations reached steady state in 6 cycles and the working capacity matched the data sets
- CFD model will be further tuned using data from Sinopec field datasets

PSA Cycle Optimization

F. 10-step PSA cycle with CnBLO, purge, three PREQ & LPP

Applied Energy, Volume 254, 15 November 2019, 113624

Cycle Schemes D, E and F that use pressure equalizations and co-current blowdown met DOE targets of 90% capture and 95% CO₂ purity

Reactor Design

- Different reactor concepts have been evaluated
- Multiple train vertical reactors with internal flow distribution are selected for final design

	Vessels and Adsorbents	GE Gasifier	
A A		Syngas flow, kmol/h	34,747
	A CALL	Sorbent needed, kg	1,115,903
		L	1,859,838
		Cycle time, min	8
		Ads. GHSV, h ⁻¹	1,117
		Total Beds	16
		Bed. Volume, L	116,240
		Bed Dimensions	
		Diameter, ft	14
		Length, ft	30.1
		Vessel wall thickness, in	5.0
		L/D	2.30
	Valve Skid	Particle size, in	1/8
	VAIVE SKIU	Bed Pressure drop, psid	3.6

TDA Design

Source: Honeywell/UOP

World-class PSA systems used in H₂ purification produces up to 400,000 m³/hr H₂ (compared to ~780,000 m³/hr flow rate used in TEA base case)

Full-scale System Design

Major Units

- 8 beds x 2 = 16
- 2 accumulator X 2 = 4
- Cycling Valves
 - $6 \times 8 \times 2 = 96$
- 2 recycle compressors
- 2 isolation vales x 2 per train = 4

Techno-economic Analysis

Gasifier	E-Gas		GE		Shell		TRIG	
Case	1	2	3	4	5	6	7	8
		Warm Gas		Warm Gas		Warm Gas		Warm Gas
	Cold Gas	Cleanup	Cold Gas	Cleanup	Cold Gas	Cleanup	Cold Gas	Cleanup
	Cleanup	TDA's CO ₂	Cleanup	TDA's CO ₂	Cleanup	TDA's CO ₂	Cleanup	TDA's CO ₂
CO ₂ Capture Technology	Selexol [™]	Sorbent	Selexol™	Sorbent	Selexol [™]	Sorbent	Selexol™	Sorbent
CO ₂ Capture, %	90	90	90	90	90	90	83	83
Gross Power Generated, kW	707,165	669,993	727,416	674,790	672,980	619,054	624,964	616,338
Gas Turbine Power	464,000	425,761	464,000	417,083	464,000	416, 147	424,722	413,946
Steam Turbine Power	243,165	244,232	257,250	247,362	208,980	202,907	200,242	202,392
Syngas Expander Power	-	-	6,166	10,345	-	-	-	-
Auxiliary Load, kW	194,495	125,755	193,155	121,834	177,361	112,254	166,998	126,730
Net Power, kW	512,670	544,238	534,262	552,956	495,620	506,800	457,966	489,609
Net Plant Efficiency, % HHV	30.8	34.0	31.9	34.4	30.8	33.4	31.5	34.2
Coal Feed Rate, kg/h	220,557	212,265	222,026	213,013	213,509	201,426	262,700	258,882
Raw Water Usage, GPM/MW	11.0	10.7	11.0	10.8	10.3	11.1	8.2	9.6
Total Plant Cost, \$/kW	3,466	3,063	3,369	3,160	3,901	3,560	3,736	3,328
COE without CO ₂ TS&M, \$/MWh	137.3	121.1	133.6	124.0	150.1	138.6	125.5	112.5
COE with CO₂ TS&M, \$/MWh	146.3	129.2	142.2	131.9	159.0	146.8	144.3	129.9
Cost of CO2 Capture, \$/tonne	43	28	38	29	49	39	40	27

 IGCC plant with TDA's CO₂ capture system achieves higher efficiencies (34.4% and 34.0%) than IGCC with Selexol[™] (31.9% and 30.8%) for E-Gas[™] and GE gasifiers

- Cost of CO₂ capture is calculated as \$29 and \$28 per tonne for GE and E-Gas[™] gasifiers, respectively (24-35% reduction against Selexol[™])
- Cost of CO₂ capture is calculated as \$40 and \$28 per tonne for Shell and TRIG gasifiers, respectively (20-33% reduction against Selexol[™])

Acknowledgements

- DOE/NETL funding under the DE-FE-0013105 project
- Project Manager, Andy O'Palko
- Chuck Shistla, GTI
- Ashok Rao, UCI
- Arvind Rajendran, UOA
- **Frank Morton, NCCC**

