A High Efficiency, Modular Pre-combustion Capture System for CoalFIRST Poly-generation Process (Contract No. DE-FE0031926)

Gökhan Alptekin Ambal Jayaraman

2021 Carbon Management and Oil and Gas Research Project Review Meeting

Point Source Capture — Lab, Bench, and Pilot-Scale Research

August 13, 2021

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objectives

UNIVERSITY of CALIFORNIA - IRVINE

Project Duration

Start Date = October 1, 2020

End Date = September 30, 2023

Project Funding

Total Budget = \$3,750,000

Federal Share = \$3,000,000

Cost Share = 750,000

- Demonstrate techno-economic viability of a modular coal-to-energy-and-chemicals process with a focus on syngas treatment and processing
 - A high temperature PSA adsorbent/WGS process is used for CO₂ removal above the dew point of the synthesis gas
 - A fixed-bed TSA based sulfur removal system will be used to remove H₂S
 - A catalytic CO₂ purification process

Main Project Tasks

- Design a fully-equipped slipstream test unit with 10 SCFM raw synthesis gas treatment capacity
- Demonstrate the operation of the integrated system with high CO₂ removal efficiency and contaminant removal using coal synthesis gas
- Detailed design of the integrated WGS/precombustion capture system
- Complete a high fidelity process design and economic analysis

IGCC with Integrated Ammonia Storage

- Warm gas removal of CO₂, sulfur and contaminants improves efficiency
- Reducing the use of excess steam improves power cycle efficiency
 - Lower energy consumption to raise the steam
- Process intensification could potentially reduce the number of hardware components and cost

TDA's Approach – Carbon Capture

- In conventional coal-to-hydrogen or coal-to-power applications, a multi-stage WGS process with inter-stage cooling is used
 - WGS is an equilibrium-limited exothermic reaction
- Water is supplied at concentrations well above required by the reaction stoichiometry to completely shift the CO to CO₂
- Excess water is also used to suppress carbon formation

3-stage WGS unit as described in the DOE/NETL-2007/1281

- In our process, the WGS catalyst is combined with a high temperature CO₂ adsorbent to achieve high CO conversion <u>at low steam:carbon ratios</u>
- Reduced water addition increases process efficiency

Background on Integrated WGS/CO₂ Capture

TDA's CO₂ sorbent integrated with a LT WGS catalyst in the same bed

- 90+% capture at steam:CO ratio= 1:1.1 with average 96.4% CO conversion
- All objectives met (no coking etc.) but high reactor T was observed

Heat Integrated WGS & CO₂ Capture

- Integrated WGS & CO₂ capture results in higher ∆T, not ideal for CO₂ capture (the WGS heat accumulates in the beds)
- Advanced heat management based on direct water injection has proven to achieve much better temperature control
- Objective is to achieve a more uniform cooling without having hot or cold spots
- The temperature rise is optimal when the catalyst is distributed into two layers with water injections before each layer

Bench-Scale Evaluations

- Successful proof-of-concept demonstrations have been completed at bench-scale
- ∆T <10°C was maintained over extended cycling (much lower than those in early field tests)

Life Tests

 We completed 32,000 cycles showing stable performance for the WGS catalyst and CO₂ sorbent

 By evaluating catalytic activity alone we showed that cycling between reducing and oxidizing conditions (i.e., steam exposure) had no adverse effect on the WGS catalyst

8

Cycle

Integrated WGS/CO₂ Capture System

150

160

170

180

190

200

210

220

Temperature

230

240

250

260

270

9

280

- Two campaigns were completed in 2019-2020 at Praxair R&D Center (Tonawanda, NY) integrated with an OTM running on natural gas
 - By coupling the WGS with the CO₂ sorbent and water injection, we were able to operate the beds at 200°C but achieve the equilibrium CO conversion of a 40°C cooler bed

290

Technology Status/R&D Needs

- Evaluation in a high fidelity prototype to fully demonstrate the concept using actual coal-derived synthesis gas
 - A 10 kg/hr CO₂ removal is being developed
- Modular/scalable sub-systems
- Warm Gas Sulfur Removal
 - Need to demonstrate operation in a simple fixed bed regenerable process
- CO₂ Purification Needs
 - CO and O₂ levels in CO₂ used for EOR are very stringent
 - Requires additional purification steps/processes

Current Project Objectives

Elevate from TRL 4+ to TRL 5

Budget Period 1 (BP1: 10/1/2020 – 9/30/2021) – in progress

- Design modifications to integrated slipstream test unit: regenerable sulfur and CO₂ purification subsystems
- Commercially produce CO₂ and sulfur sorbents
- Complete initial techno-economic analysis of the CoalFIRST Poly-generation process integrated with warm gas cleanup

Budget Period 2 (BP2: 10/1/2021 - 9/30/2022)

- Fabricate regenerable sulfur removal and the CO₂ purification subsystems
- Integrate them to the 10 cfm 8-bed integrated WGS/carbon capture unit
- Long term testing of the desulfurization sorbent (300 cycles)

Budget Period 3 (BP3: 10/1/2022 - 9/30/2023)

- Carry out a 3 week field test at GTI at their pilot gasification facility
- Complete the process development and the full scale system design
- Complete an economic evaluation to accurately estimate: Overall process efficiency, CO₂ removal cost and the RSP of NH₃

Test Site for Carbon Capture Testing

- Design data are shared with our testing partner GTI
- We will have a full HAZOP for the test unit completed in December 2021

Operation Conditions	U-GAS®	R-GAS™	
Nominal Feed Rate	20 tpd	18 tpd	
Capacity	6 MW _{th} 5 MW _{th}		
Syngas Production	3000 lb/hr	2500 lb/hr	
Pressure	8 – 15 bar	15 – 27 bar	
Nominal Temperature	1400°F – 1800°F	2500°F – 4000°F	
Diameter	11 in.	6 in.	
Technology	Fluidized bed	Entrained-flow	
O ₂ – Blown Test Campaigns Performed	Yes	Yes	
Air – Blown Test Campaigns Performed	Yes	No	

Detailed Design of 10 CFM Test Skid

- Test unit is designed to treat 10 SCFM (280 SLPM) of syngas flow
- 8 sorbent beds and 2 accumulator tanks are used to show:
 - 10-20 kW equivalent gas treatment (10 CFM unit)
 - High CO₂ removal efficiency
 - High CO₂ purity (i.e., high H₂ recovery)
 - The will contain three sub-assemblies/ skids:
 - Integrated WGS/CO₂ Separation Skid (new updated reactor design)
 - Gas Processing Skid (new regenerable warm gas desulfurization)
 - CO₂ Purification Skid (new skid to demonstrate 95+% CO₂ purity)

Impact of Particle Size on CO₂ Adsorption

- We used a particle size of 8-20 mesh and measured CO₂ isotherms at 30°C, 180, 200 and 240°C)
- At lower temperatures (e.g., 30, 180, 200°C) both 12-40 and 8-20 mesh size particles achieved similar capacity
- Heat of Adsorption is calculated to be between 5-7 kcal/mol

Qualification of the New CO₂ Sorbent

- At the highest pressure of 500 psi, the WGS/CO₂ sorbent bed achieved 6.2 % wt. CO₂ capacity and 99% CO conversion, far exceeding our Milestone (1-1) target of 4% wt. CO₂ capacity at 500 psi
- We completed over 500 adsorption/ desorption cycles at 500 psi

Design of Warm Gas Sulfur Removal

- Slipstream skid to demonstrate warm gas sulfur removal
- Electric heaters to achieve required adsorption and regeneration operating temperatures
- Air-cooled exchangers to cool the outlet gas
 - Product gas and regeneration off-gas will be recombined and returned to GTI
 - Switching valves will be installed in cool gas locations

Qualification of Regenerable Sulfur Sorbent

20 cycles complete with Warm Gas Regenerable Sulfur Sorbent

· Cycles 5-20: 10 hour adsorption

H2S Out (ppm)

• Regeneration until oxygen level >2%

Susteon Regenerable Sulfur Sorbent 306 cc. 344.5 g. 2" id reactor

Adsorption: 2,000/h, 538°C, 5k ppm H₂S, 35 psig Desorption: 1,000/h, 566°C, 3.5% O₂, 35 psig

CO₂ Purification Subsystem

CO₂ Purification Catalyst Performance

- We tested simulated CO₂ product gas at varying CH₄ concentration and gas-solid contact times at stoichiometric conditions
 - 4% CH₄, 15k/hr GHSV
 - 6% CH₄, 10k/hr GHSV
 - $\sim 2\%$ CH₄, 30k/hr GHSV
 - High humidity exposure results in more CO formation
 - Temperature needs to be controlled by cooling the inlet gas

Initial Techno-economic Analysis

	AST Study	UCI Study	UCI Study		
	Actual	Actual	Actual*	$Projected^{+}$	Projected ⁺⁺
Chemical Storage type	NH_3	none	H ₂	H ₂	NH_3
ASU Type	Cryogenic	Cryogenic	ITM	Cryogenic	Cryogenic
Carbon Capture Technology	Selexol	TDA	TDA	TDA	TDA
Carbon Capture , %	95%	90%	90%	90%	90%
Electricity: Chemical	30:70	100:0	50:50	48:52	57:43
Coal Feed rate, GJ/h	1412	5763	5422	5422	5422
Gross Electric power, MW _e	96	694	481	481	484
Total Auxiliaries, MW _e	60	139	103	131	131
Net Electric Power, MW _e	36	555	377	350	353
Energy stored as chemical, MW	84	0	377	377	268
Combined Net Power and	120	555	754	727	622
Chenmical Storage, MW	120				
HHV Net Plant Efficiency	30.6%	34.7%	50.1%	48.3%	41.3%

* Chen, Q., Rao, A. and Samuelsen, S., 2014. H2 coproduction in IGCC with CCS via coal and biomass mixture using advanced technologies. Applied energy, 118, pp.258-270.

Greater than 40% net efficiency for NH₃ co-production is achieved with TDA warm gas capture system and a cryogenic ASU plant

Acknowledgments

- DOE/NETL Project Manager, Andrew Jones
- Susteon, Raghubir Gupta, Andrew Ton, Cory Sanderson
- GTI, Chuck Shistla, Scott Trybula
- UCI, Ashok Rao

