Transformational Sorbent System for Post-Combustion Carbon Capture (DE-FE0031734)

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Matthew Schaefer Sarah Devoss Ewa Muteba Michael Ware Nathan Roszel

Carbon Management/Oil and Gas Research Project Review Meeting Point Source Capture — Lab, Bench, and Pilot-Scale Research

August 17, 2021

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objective

- Objective is to develop a transformational metal-organic framework (MOF) based sorbent system that can:
 - Capture more than 90% of CO₂ emissions from a coal power plant
 - Recover CO₂ at 95% purity
 - Cost of electricity at least 30% lower than amine based capture systems with the capture cost less that \$30 per tonne of CO₂
- TDA will develop a highly stable high capacity physical adsorbent to remove CO₂ from the flue gas using a novel adsorption cycle scheme
- Main Project Tasks
 - BP1 Demonstrate sorbent performance in lab scale
 - Assess impact of flue gas contaminants (SO₂, NOx, HCI)
 - Develop adsorption cycle sequence
 - Preliminary Techno-economic analysis (TEA)
 - BP2 Scale-up sorbent production
 - Complete Life Tests
 - Optimize adsorption cycles and update TEA
 - BP3 Complete field tests (6 months duration)
 - High Fidelity TEA and EH&S assessment

Project Team

UNIVERSITY of CALIFORNIA - IRVINE

Overall Project Duration

- Start Date = June 1, 2019
- End Date = May 31, 2022

Budget

- Project Cost = \$3,750,000
- DOE Share = \$3,000,000
- TDA and its partners = \$750,000

Process Schematic

- Sorbent operates between 30-50°C under vacuum, (0.2-0.3 atm) with steam purge removes ≈99% of CO₂ (requires more steam purge than Case 1)
 - Low pressure drop, reduced parasitic load
 - High CO₂ selectivity resulting in greater than 95% CO₂ purity
- Similar technology can also be applied to NGCC applications, with higher steam purge/energy penalty

TDA's MOF Sorbent

Physical Parameter	Units	TDA's MO	F Adsorbent	TDA MOF	Selectivity
		Base Improved		P _{CO2} (bar)	CO_2/N_2
		preparation	preparation	0.05	9.32
BET Surface Area	m²/g	200.8	526.6	0.1	16.29
Langmuir Surface Area	m²/g	246.4	618.2	0.15	22.92
Nanoparticle Size	nm	29.9	113.9	1	57 52
Pore Volume	cm ³ /g	0.134	0.342		57.52
Median Pore Width	Å	17.0	14.4		
	•	•	• • • • •		5

Heat of Adsorption

Water Adsorption Isotherms

- Low pressure water isotherms are linear indicating that water easily desorbs from the sorbent surface
- No change in low pressure isotherm before and after water isotherm measurements

Pelletization of the MOF Sorbent

Powder Material

Pelletized Materials

Pelletized sorbent retained >95% of their capacity when normalized based on active MOF weight

Physical Parameter	Units	SIFSIX-2- TDA MOF	SIFSIX-2- TDA MOF
		- 2016 - pase	– 2020 – Improvea
		preparation	preparation
BET Surface Area	m²/g	200.8	526.6
Langmuir Surface Area	m²/g	246.4	618.2
Nanoparticle Size	nm	29.9	113.9
Pore Volume	cm³/g	0.134	0.342
Median Pore Width	Å	17.0	14.4

MOF Scale-up: Bench Scale – Complete

- Scale-up from 1L to 22L flask and to 180L Hastelloy reactor in BP2
- BP1 evaluations have focused on improving synthesis parameters and space-time yields while conserving raw materials
 - Synthesis improvements have produced space yield improvements of 10-15X, and time yield improvements of 5-8X
- The reactor is equipped to perform MOF synthesis, Filtration/Rinsing, Drying/Devolatilization all sequentially in the same reactor
- A classified area is designed and built to handle the equipment and solvents required for MOF processing

٠

Synthesis Variation: Scale Up Batches

Fixed Bed Adsorption Tests

TDA employed multiple fixed-bed adsorption system to carry out adsorption breakthrough and adsorption/desorption cycle tests

- Adsorption Breakthrough Tests
- Counter current adsorption/ desorption cycles
- Cycle Tests in the presence of contaminants (NOx, SOx)

TDA MOF Performance

$5/15/20\% CO_2$ in N₂ at T = 30°C, GHSV = 2,400 h⁻¹, 30/50/65% RH Regen Purge gas: N₂, Counter flows

- We demonstrated a high working capacity in excess of 5% wt. CO₂ at ~15% vol. CO₂
- ~2.5% wt. CO_2 at 4% vol. CO_2
- We also showed that the temperature and humidity levels have limited impact on sorbent's working capacity
- Higher temperatures resulted in lower working capacity
- No significant impact in the presence of humidity up to 65%
- Higher temperatures resulted in lower working capacity

Life Tests

 $5/15/20\% CO_2$ in N₂ at T = 30°C, GHSV = 2,400 h⁻¹, 30/50/65% RH Regen Purge gas: N₂, Counter flows

A stable working capacity was demonstrated in counter flow desorption

Life Tests in Presence of Contaminants

We demonstrated stable working capacity in the presence of flue gas contaminants such as humidity, NOx and SOx Up to 65% RH, 500 ppm NOx, 50 ppm SOx

Maximum ~ 20% drop in capacity under high SOx and NOx concentrations

•

15% CO₂ in N₂ at T = 30/45/60°C, GHSV = 1,000 h⁻¹, 0-6% H₂O

Impact of Contaminants

15% CO₂ in N₂ at T = 30/45/60°C, GHSV = 1,000 h⁻¹, 0-6% H₂O Regen Purge gas: N₂, Counter flows

We observed <5% drop in working capacity at 100 ppm NOx and 10 ppm SOx

At 500 ppm NOx and 50 ppm SOx the working capacity dropped by 10%

٠

•

After saturating the sorbent with 500 ppm NOx or 50 ppm SOx the sorbent working capacity dropped by ~ 20%

Contaminants

Adsorption Cycle Modeling

- Initial modeling results from University of Alberta shows we are able to use simple cycle schemes without addition of steam purge is shown
- When having a more advanced cycle schemes with steam assisted VSA we can achieve 95% CO_2 purity with a CO_2 levels in flue gas as low as 8%

Process Simulation

CASE NO.	UNITs	DoE 11	DoE 12	Case 1B	Case 2	Case 3
CO ₂ capture technology		No Capture	Amine	Recirculation - regen@ 0.2 bar Steam purge	Recirculation - regen@ 0.1 bar NO Steam Purge	No Recirculation - regen@ 0.2 bar Steam Purge
Steam turbine power	kWe	580,400	662,800	709,618	709,805	677,749
Total auxiliary consumption	kWe	30,410	112,830	159,618	159,805	127,749
Net power output	kWe	549,990	549,970	550,000	550,000	550,000
Auxiliary load summary						
Flue gas booster + CO ₂ removal	kWe	0	20,600	11,958	11,798	8,552
VSA Vacuum pump	kWe	0	0	53,829	54,876	32,524
CO ₂ compression	kWe	0	44,890	48,877	48,205	45,842
CO ₂ cryogenic purification	kWe	0	0	0	0	0
Common Auxiliaries	kWe	30,410	47,340	45,588	44,907	40,832
% Net plant efficiency	% HHV	39.3	28.4	30.52	30.94	32.66
Net heat rate	kJ/kWh	9,165	12,663	11,794	11,636	11,062
Condenser cooling duty	10^6 kJ/h	2,298	1,737	2,774	2,879	2,534
Consumables						
Thermal input, Coal	kWt HHV	1,400,162	1,934,519	1,801,849	1,777,736	1,684,206
Carbon captured	%	0	90	90	0	90
Energy for carbon capture	kWh/tonne		305	216	201	140
including compression	kWh/tonne		388	313	299	237

Energy for CO₂ capture is 54.2% lower for TDA's sorbent based CO₂ capture systems than amine scrubbing

Reactor Vessel Design and Costing

Δ P=105 mbar		
137.5 MW		
4		
4		
16		
161.2 m ³ /s		4 4.9
4.5 tonne/min	48 7.97	10 0.0
7.0% wt. CO ₂		
1 min	70 3.32	
64.0 tonne		
0.55 tonne/m ³		
116.4 m ³		
11.4 m ²		_
	105 mbar 137.5 MW 4 4 16 161.2 m ³ /s 4.5 tonne/min 7.0% wt. CO ₂ 1 min 64.0 tonne 0.55 tonne/m ³ 116.4 m ³ 11.4 m ²	105 mbar 137.5 MW 4 4 16 161.2 m ³ /s 4.5 tonne/min 7.0% wt. CO ₂ 1 min 64.0 tonne 0.55 tonne/m ³ 116.4 m ³ 11.4 m ²

- Four radial beds per train (total of 16 beds) •
- SA516-70 carbon steel, 0.5" thickness •
- 120 in OD x 565 in T/T •
- Cost per bed \$587,504 FOB •
- Total reactor cost \$9,400,068 •

4 4.92 -9 0.00 10 0 00

SORBENT VESSEL DIMENSIONS

Reactor Vessel Design and Costing

- Rapidly actuating valves are identified to change the bed position in a few seconds
- 60 in NPS, 0.375 in thickness (standard schedule) process piping for flue gas and air regeneration lines
- Two (2) 12 ft OD flue gas distribution and return manifolds)
- 2,000 linear feet, estimated from concept layout

3-D Layout of the Sorbent System

Sorbent Only Steam Purge - CAPEX

- Total cost of CO₂ Capture System including flue gas treatment is \$207.8 MM (\$378/kW)
 - Cost of CO₂ capture ~\$37/tonne
 - This meets DOE's current target of < \$40/tonne at <\$450 MM
- CAPEX for CO₂ capture needs to go below \$180 MM to meet transformational CO₂ capture targets (<\$30/tonne)

Cost of Capture Summary

CASE NO.	DOE Case 12	TDA Case 1B	TDA Case 2	TDA Case 3
CO2 CAPTURE TECHNOLOGY	Reference Amine	CO₂ recirculation VSA: Regen at 0.2 bar & BFW Heating	CO₂ recirculation VSA: Dry Regen at 0.1 bar	NO CO ₂ recirculation VSA: Regen at 0.2 bar VLP Steam
CO ₂ Recirculation	-	yes	yes	-
VLP Steam Purge	-	yes	no	yes
Net power, MW	550	550	550	550
Capacity factor (CF), %	85	85	85	85
Total plant cost (TPC)	1,959,399,000	1,555,700,000	1,549,006,000	1,478,373,800
Total Plant Cost, \$/kW	3,563	2,829	2,816	2,688
1st year cost of electricity (COE) w/o CO_2 TS&M, \$/MWh	137.3	114.8	113.8	109.0
1st year cost of electricity (COE), \$/MWh	147.3	123.0	122.0	117.3
1st year CO ₂ captured costs w/o TS&M, \$/tonne	56.41	36.97	36.42	30.67

- The cost of CO₂ capture is considerably lower for sorbent only CO₂ capture systems: 34.5% (for Case 1B); 35.4% (for Case 2); 45.6% (Case 3)
- Cost of CO₂ capture for Sorbent only system with re-circulation of flue gas CO₂ is ~ 36.4/tonne while for a Sorbent only System with VLP steam purge is ~\$30.7/tonne

