Membrane-Sorbent Hybrid System for Post-Combustion Carbon Capture (DE-FOA-0001791)

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Mike Bonnema Douwe Bruinsma, PhD Matt Cates Mike Cesario Dave Gribble Brandon Gushlaw Jerrod Hohman Freya Kugler

TDA Research, Inc. Carbon Management and Oil and Gas Research Project Review Meeting

August 12, 2021

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Team and Objectives

- Design and construct a ~1 MW_e scale membranesorbent hybrid system for post-combustion carbon capture
- Hybrid process combines a polymer membrane and a low-temperature physical adsorbent to remove CO₂ from the flue gas
 - Membrane is being developed by MTR
 - Adsorbent has been developed by TDA for postcombustion capture

Main Project Tasks

BY₂

BY₃

- ✓ Completed the Design of the Test Unit
- Completed the Initial Design Review
- Completed Preliminary Techno-economic analysis
- ✓ Fabrication of the Test Unit
- Site Preparation, Installation and Shakedown Tests
- Field Tests (ongoing; 6–12 months duration)
- High Fidelity Techno-economic Analysis

Hybrid Membrane Sorbent Process

Primary Air Fan

- Membrane operates at T up to 50°C under mild vacuum, (~0.2 atm) removes ~50% of CO₂ and almost all water
 - TDA's sorbent removes remaining CO₂ in the membrane effluent (retentate) ensuring 90+% carbon capture
 - The boiler feed air is used as a sweep gas to facilitate sorbent regeneration
 - CO₂ circulation to the boiler air intake increases the CO₂ concentration in the flue gas, providing a higher driving force for the membrane

TDA Sorbent

- TDA developed a mesoporous carbon sorbent modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at low partial pressures
 - Because CO₂ is not bonded, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4-5 kcal/mol

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354

Sorbent optimization and production scale-up was completed in a separate DOE project (DE-0013105)

Sorbent operation in a VSA system was successfully demonstrated with actual flue gas (DE-0013105)

TDA Radial Flow Reactor Concept

TDA Radial Flow Reactor Concept

Technology Maturation

0.5–1 kW Sorbent Only Tests

0.5–1 kW Hybrid Tests

Western Research Institute/ Thermosolv

50 kW Hybrid Tests

Wyoming Integrated Test Center (WITC) Basin Electric's Dry Fork Station Gillette, WY

0.5–1 MW Hybrid Tests

Technology Centre Mongstad (TCM) Norway

Gas Technology Institute (GTI) Tests with pilot coal combustor

2011 2014 2016 2015 2017 2019-20 2021 50 kW 0.5-1 MW Bench-0.5-1 kW 0.5-1 kW 0.5-1 kW hybrid Sorbent hybrid tests hybrid tests scale tests Sorbent Sorbent Only Scale-up IP tests at WRI with at WTIC with at TCM with Only tests tests at GTI secured Coal flue gas Coal flue gas at TDA Coal flue gas Coal flue gas

Project Focus

- TDA Design and development of its modular sorbent reactor concept
- MTR Modify an existing 20 TPD CO₂ capture system previously developed with DOE funding
 - Utilizing one of MTR's early generation membranes with significant test history
- TCM Host the evaluation of the integrated test unit

TDA's Sorbent System

Existing MTR Membrane Module (20 TPD evaluated at NCCC) TCM Mongstad, Norway

Major Field-Test Objectives

Demonstrate sorbent performance

- ✓ CO₂ removal efficiency
- ✓ CO₂ uptake capacity

•

Demonstrate the mechanical stability of the sorbent

- Quantify the dust generation from shipping, loading and operations
- Demonstrate sorbent life
- Demonstrate effective operation of the radial flow reactors
 - Low pressure drop
 - Uniform flow distribution
 - Modular operation
 - Validation of Design Models
 - CFD and Adsorption Models
 - CCSI Model
 - Cycle optimization
 - **Optimization of the Operation of the Hybrid System**

Hybrid Membrane System Overview

Sorbent Vessels

Sorbent Loading into the Vessels

Sorbent Settling and Dusting

- Sorbent settling is not desirable as it generates a void at the top of the bed
 - Potential for bed by-pass
- System design and loading procedures effectively pre-settled the sorbent
- Top of sorbent bed is sealed with custom gaskets and a stainless steel plate
- Total sorbent used to top-off beds after settling was ≤ 2% of final sorbent mass

- Amount of dust generated was considerably lower than that observed in axial beds
- Sorbent retention has been excellent; total fines collected in the baghouse was ≤ 0.0006% wt. of the sorbent load over the first month of operation

Measurement of Sorbent Dusting

- Baghouse pressure drop is low and stable over time; consistent with a low rate of fines collection
- Total volume of dust collected in baghouse to date is ≈ 8g (very low compared to total sorbent inventory of ~1.7 tonne)

Collected particulate also contains traces of fabrication debris

Test Summary Since Startup

CO₂ Capture Efficiency

Total sorbent time online > 1,072 hours (45 days)

Includes vacuum pump interruptions

Total CO₂ processed (from RFCC unit) > 513.7 tonne

Total CO₂ capture (w/ upsets) = 86.4%

Total # cycles > 33,000

CO ₂ Captur	<mark>e</mark> < 90%	> 90%	> 95%	
hours	575.1	496.5	63.9	
days	24.0	20.7	2.7	
Percent of run time	53.7%	46.3%	6.0%	

CO₂ Flow Rate – In and Out

* - Membrane vacuum pump interruptions increase CO_2 load to the sorbent sub-system by 50–100% CO_2 Mass Balance

High CO₂ Capture Efficiency (≥95%)

Stable Performance

- Identical test conditions were maintained on June 30, July 12 and August 7 during parametric tests
- Stable and repeatable sorbent performance over 5-week testing interval
- Slight changes in the CO₂ capture rate is attributed to the increased CO₂ load in the retentate flow
 - The integration of sorbent operation with the membrane system makes it difficult to set an exact flow rate to the sorbent bed

Pressure Drop Measurements

- TDA's radial sorbent bed design achieved a very low pressure drop
- At the 2000-2500 kg/hr flue gas flow, the total ΔP was measured as <20 mbar
- Actual measured ΔPs agree well with the design model
- The membrane unit treating the same flue gas flow and rejecting the same amount CO₂ generated ~120 mbar pressure drop (Stage 1 membrane)

Temperature Distribution in the Bed

Flow Distribution in the Bed

- Radial flow velocity measurements show uniformity within ± 2%
- Axial flow velocity measurements indicate a flow imbalance towards top of the bed
- Flow velocity probes are evenly spaced within the outer flow channel

Membrane Performance

- Modified unit was fitted with MTR's Gen-1 Polaris membranes
- Stable performance with ~78-80% vol. CO_2 purity (dry basis)

Membrane modules being loaded with new membranes prior to shipment

Reactor Vessel Design and Costing

Sorbent S	ystem - Hybrid		ΔP=10	5 mbar		
	Stage I	Stage II	Module Size:	68.75 MW		
Bed 1	1		No. of Trains:	8		
Bed 2	30s 30s		Beds/Train:	2		
60s			Total Beds:	16		
Adsorption - Flue gas flow		Flue Gas Flow: $74.5 \text{ m}^3/\text{s}$ CO_2 Flow: 1.22 tonne/min				
			Capacity:	1.8% Wt%		
	Desorption - Air Purge flow		Cycle Time:	1 min		0.54m-
			Sorbent Inventory:	67.8 tonne/m ³	22 35m	+3.61m- +3.96m-
		Sorbent Density:	0.59 tonne/m ³			
		Bed Volume:	116.4 m ³			
		Bed Area:	12.3 m ²			
		Lever	- Sixteen (16) radial beds			
			 SA516-70 carbon steel, 0.5" 			
Fig. 31		Roa	thickness			
		Lever_	 13 ft OD x 73¹/₃ ft T/T 			
				39.8m		
						- - - 2.94m-

3-D Layout of the Hybrid Sorbent System

Techno-economic Analysis

CASE NO.	UNITs	DoE 11	DoE 12	MTR WP Study	TDA + MTR 3
CO ₂ capture technology		Reference No Capture	Reference Amine	Membrane Only	Membrane- Sorbent Hybrid
CO ₂ purity from separation Module			95%	80%	80%
Steam turbine power	kWe	580,400	662,800	780,795	750,371
Total auxiliary consumption	kWe	30,410	112,830	224,605	200,371
Net power output	kWe	549,990	549,970	556,190	550,001
Auxiliary load summary					
Flue gas booster + CO ₂ removal	kWe	0	20,600	50,170	17,074
VSA Vacuum pump	kWe	0	0	37,475	33,578
CO ₂ compression	kWe	0	44,890	75,768	74,456
CO ₂ cryogenic purification	kWe	0	0	20,397	23,214
Common Auxiliaries	kWe	30,410	47,340	40,795	52,049
% Net plant efficiency	% HHV	39.3	28.4	28.7	29.45
As-received coal feed	kg/h	185,759	256,652	256,715	247,755
Carbon captured	%	0	90	90	90
Total Plant Cost	\$/kWe	1,981	3,563	3,461	3,006
Cost of Electricity (COE)	\$/MWh	\$ 80.95	\$ 137.30	\$ 132.30	\$ 121.85
Cost of CO ₂ Captured	\$/tonne	-	\$ 56.49	\$ 52.00	\$ 43.30

- TDA's membrane sorbent hybrid system has a net plant efficiency of 29.45% compared to 28.7% in MTR-Worley Parson Study for membrane only system
- TDA's membrane sorbent hybrid system has 23% lower cost of capture compared to reference amine system

Sensitivity Analysis

- Cost of CO₂ Capture is estimated as \$43.3/tonne for the hybrid process at capture system cost of \$178.6 MM
 - Includes the flue gas treatment subassembly, including blowers, DCC etc.
- DOE 2030 Target of \$40/tonne can be met if CAPEX is reduced to \$110 MM
 - Trade off between dP/parasitic power loss and vessel dead volume/cost will be analyzed
- The target will also be met if the CO₂ purity gets above 92% by vol.

Acknowledgments

- DOE/NETL Project Manager, Andy O'Palko
- MTR Team, Tim Merkel, Jay Kneip, Thomas Hofmann, Erik Westling
- GTI Team, Chuck Shistla
- UCI, Ashok Rao
- TCM Team, Kjetil Hantveit, Sundus Akhter, Stein Olav Nesse, Magne Andreas Tresvik, Magnus Aronsson

