

# ROTA-CAP<sup>tm</sup>: An Intensified Carbon Capture System Using Rotating Packed Beds DOE Contract No. DE-FE0031630

Osman M. Akpolat

GTI (Gas Technology Institute)

August 12, 2021

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

### Outline

- Project Overview
- Technology Background
- Technical Approach Discussion
- Progress and Current Status
- Summary



## **79-year History of Turning Raw Technology into Practical Energy Solutions**

### FOR A BETTER ECONOMY AND A BETTER ENVIRONMENT













World-class piloting facilities headquartered in Chicago area

### Introduction to GTI

- Research organization, providing energy and environmental solutions to the government and industry since 1941
- Facilities: 18 acre campus near Chicago





### Idea

### Market Analysis

Technology Analysis

Product Development

Lab and Field Testing

Demonstration

Commercialization

# **Project Overview**





### **ROTA-CAPtm: An Intensified Carbon Capture System Using Rotating Packed Beds**

**Sponsor** 



- **Funding**: \$2,784,222 DOE (\$743,000 co-funding), Duration 42 months  ${\color{black}\bullet}$
- **Objective**: The objective of this project is to develop and validate a transformational carbon capture technology—ROTA-CAP<sup>tm</sup> to meet DOE's cost target of  $\leq$  30/tonne CO<sub>2</sub>, 90% capture rate, and product CO<sub>2</sub> purity target of  $\geq$ 95 %.

BP1: 10/1/2018 – 3/31/2021 BP2: 4/1/2021 – 3/31/2022

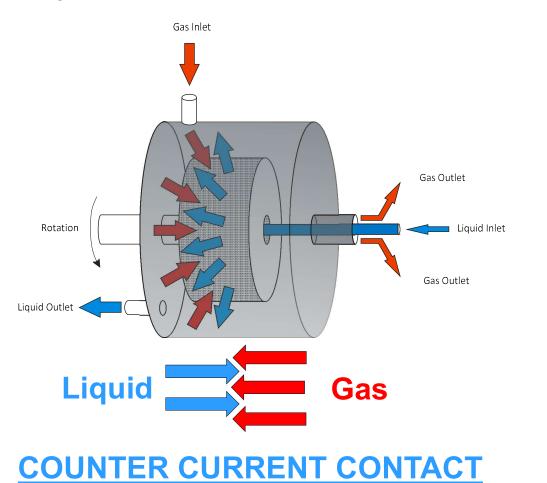


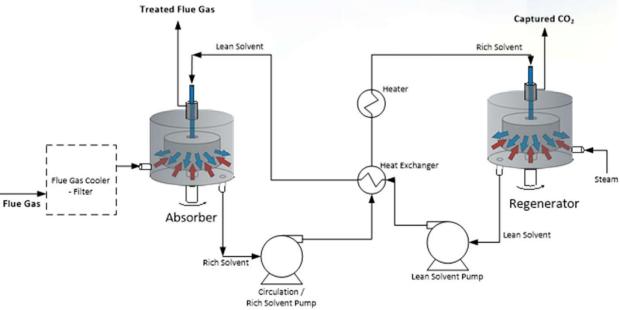
### **DE-FE0031630**

6

# **ROTA-CAPtm: DOE/NETL Project Objectives and Members**

- Design, construct, test and model novel rotating packed bed (RPB) absorbers and regenerators
- Assess the performance of the integrated hardware and solvent under a range of operating conditions
- Test with simulated flue gas at GTI
- Long term test with real flue gas at the National Carbon Capture Center (NCCC)






### **ROTA-CAPtm: Process Intensification (PI) by Using Rotating Packed Bed Reactors to Replace Conventional Absorber and Regenerator**

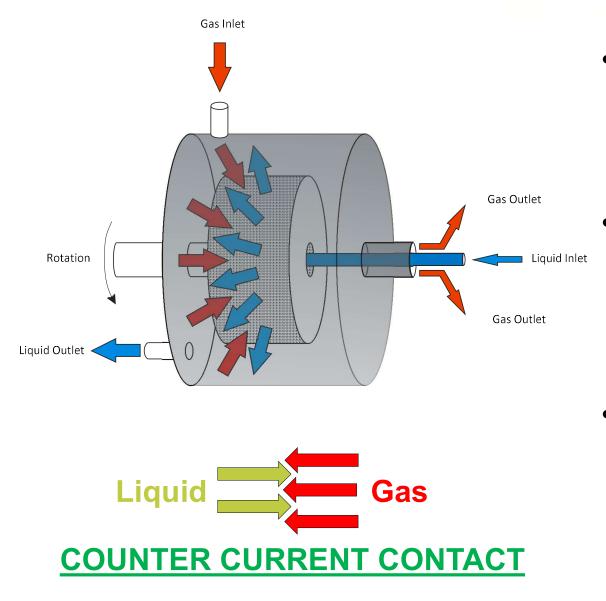
ROTA-CAP<sup>tm</sup> uses rotating packed bed (RPB) absorbers and regenerators for contacting flue gas with an advanced solvent such as Carbon Clean's CDRMax ® for carbon capture







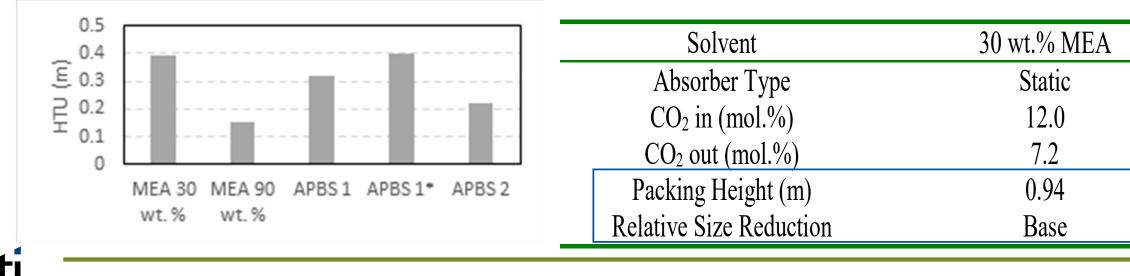



#### Simplified ROTA-CAP<sup>tm</sup> flow diagram

# **Technology Background**






### **RPB Absorber Background**

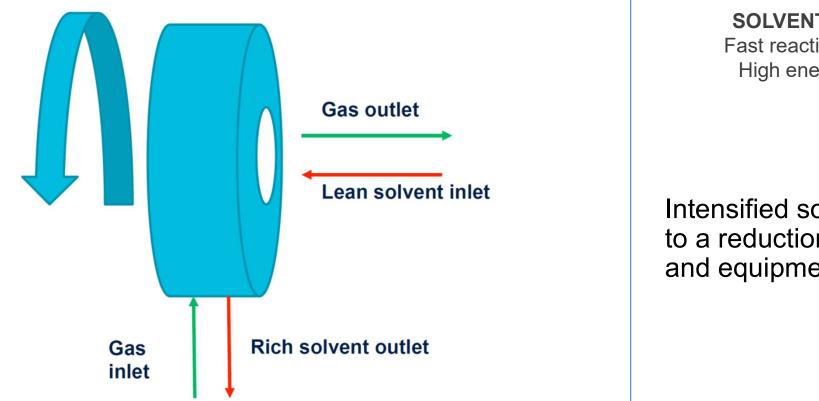


- Initial tests (UK) on laboratory prototype absorber performance measured mass transfer of CO2 (12 vol.%) into 4 solvent systems.
- Counter current contact:
  - Solvent distributed from inner radius to outer radius under centrifugal force generated by rotation of the packed bed.
  - Gas flows from outer radius to inner radius of packed bed.
- Absorber tests measurements:
  - Inlet and outlet gas phase CO2 concentrations
  - Inlet, outlet and sump solvent temperature
  - Gas and liquid flow rates
  - Speed of rotation

### **Solvent Background**

- Intensified solvents have been developed to achieve higher CO<sub>2</sub> loadings than those used in conventional systems – these are more viscous than conventional solvents.
- Intensified solvents (MEA 90 wt.% and APBS 2) exhibited higher mass transfer rates (low HTU) ulletthan non-intensified solvents (MEA 30 wt.% and APBS 1).
- Simulation determined a conventional absorption process with 30 wt.% MEA requires packing ulletheight of 0.94 m to achieve equivalent mass transfer of CCSL's intensified solvent in RPB with 0.11 packing height – leading to close to 90% size reduction






| APBS 2 |
|--------|
| RPB    |
| 12.0   |
| 7.2    |
| 0.11   |
| 8.5    |
|        |

## **ROTA-CAPtm**

### **ROTA-CAP EQUIPMENT**

RPB equipment improves mass transfer leading to up to 90% volume reduction from a conventional static column.



CCS's advanced solvents (Amine Promoted Buffer Solutions or APBS) remove  $CO_2$  from a variety of gas streams – for use in new and existing industrial facilities.

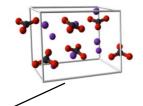
**SOLVENTS:** Fast reaction High energy



Intensified solvent leads to a reduction in energy and equipment size.

**Intensified Solvents (APBS 2)** 




### **RPB** equipment with intensified solvent will improve typical economics

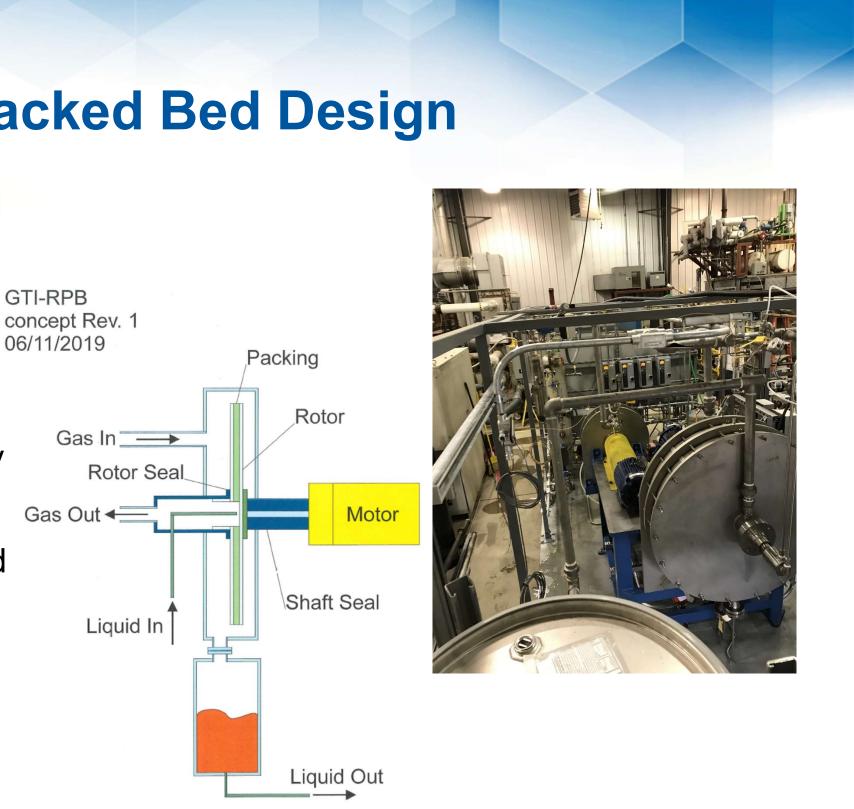


© Carbon Clean Solutions Ltd 2021



### **INTENSIFIED SOLVENT**

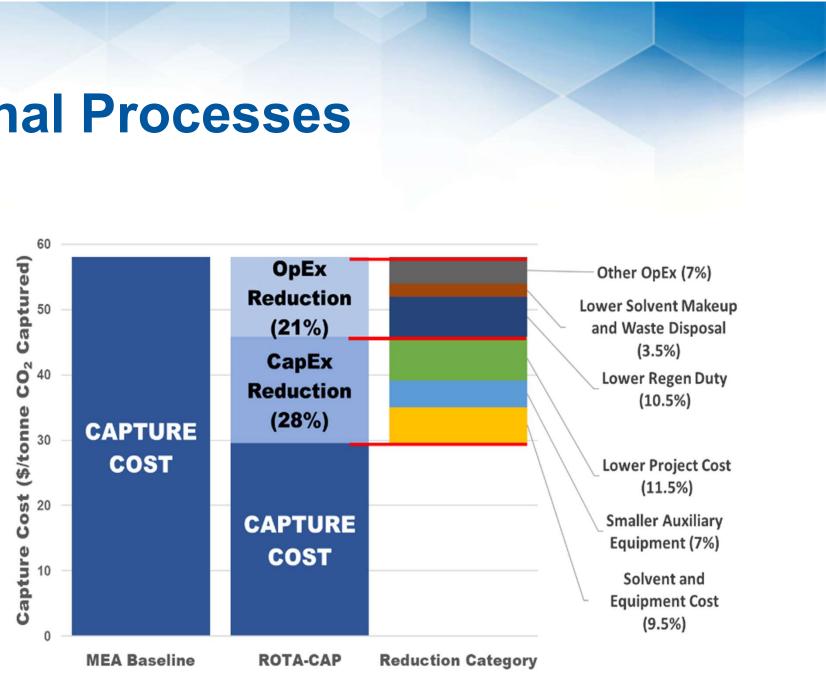



SALTS: Slow Reaction, Low energy

**Advanced Solvents (APBS 1)** 



### **ROTA-CAPtm: Rotating Packed Bed Design**

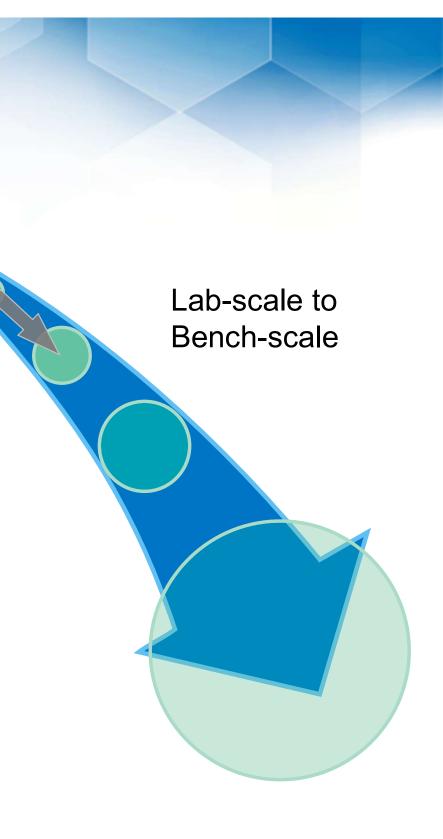

- GTI and its predecessor institutions GRI and IGT has experience on RPB process technology for natural gas dehydration and bulk acid gas removal process design and operation
- GTI Engineering Team reviewed mechanical requirements of the RPB sizing submitted by Carbon Clean.
- GTI prepared initial RPB design concept and mechanical design for rotating packed beds.
- Packing for RPB's are provided by Montz, Germany.





### **Advantages Over Traditional Processes**

- RPB technology reduces the size  $\bullet$ and therefore cost of the absorber. RPB regenerator size reduction is comparable to that of an RPB absorber
- Lower circulation rate reduces sizing requirements of heat exchangers, pumps, and coolers by up to 50%




Lower residence time of the solvent in the absorber and lower reboiler duty reduces oxidative and thermal degradation by up to 77%

### **Technical and Economic Challenges**

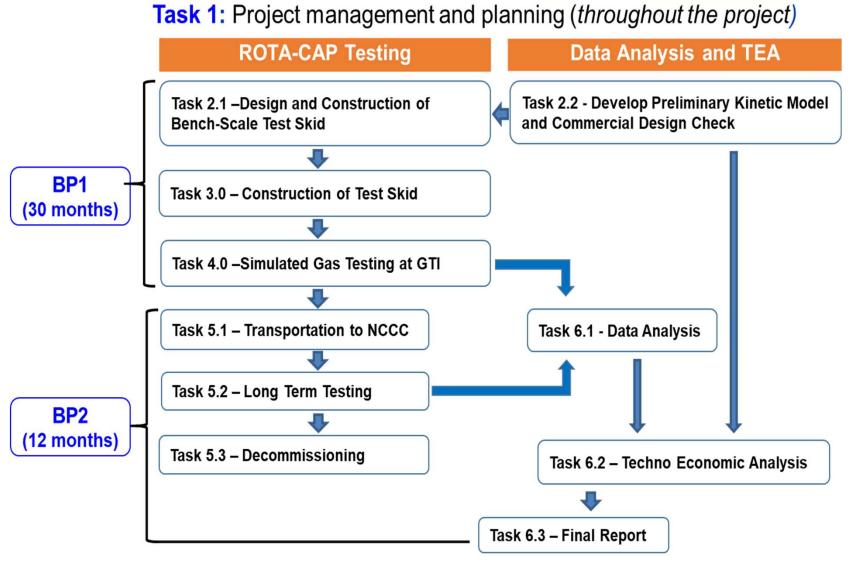
- The integrated use of RPBs as both absorber and regenerator in a single system
- The mechanical design parameters of rotating equipment
- Solvent stability performance during operation
- Integrating and achieving required solvent regeneration using an RPB regenerator





# **Technical Approach**






# **Test Plan and Key Experimental Parameters**

| Parameter                                          | Range                                          |
|----------------------------------------------------|------------------------------------------------|
| Rotational Speed                                   | 100–500 RPM                                    |
| Absorber Liquid/Gas<br>ratio                       | 0.5–5.0 kg/m3                                  |
| Solvent Circulation<br>Rate                        | 30–150 kg/h                                    |
| Solvent<br>Concentration &<br>Viscosity            | 35–70 wt.% & 5–80 cP                           |
| Regenerator<br>Operating Pressure<br>& Temperature | 0.0–1.0 bar(g) & 100–<br>130°C                 |
| Flue gas<br>composition                            | Synthetic - Natural gas-<br>fired - Coal-fired |

- 50kWe (1000kg/day CO<sub>2</sub> removal) scale • integrated carbon capture skid
- Design, construct, test and model novel rotating ulletpacked bed (RPB) absorbers and regenerators
- Assess the performance of the integrated  $\bullet$ hardware and solvent under a range of operating conditions
- Test with simulated flue gas at GTI •
- Long term test with real flue gas at the National • Carbon Capture Center (NCCC)
- Test conventional column performance using • NCCC's Slip Stream Test Unit (SSTU)

### **Project Schedule and Milestones**



| - ()    | Milestones                                         | Planned          | Actual  |  |
|---------|----------------------------------------------------|------------------|---------|--|
| ct)     | Finish Construction of Test Skid                   | 2/8/21           | 2/12/21 |  |
| c Model | Start Parametric Testing                           | 2/15/21          | 2/28/21 |  |
|         | Develop Preliminary Kinetic Model                  | 8/1/19           | 6/1/19  |  |
|         | Update Kinetic Model Based on<br>Experimental Data | 5/31/21          | 5/31/21 |  |
|         | Transport Skid to Host Site                        | 8/31/21          |         |  |
|         | Start Long-Term Testing                            | 10/15/21         |         |  |
|         | Verify Kinetic Model with Real Flue<br>Gas Data    | 3/31/22          |         |  |
|         | Summary Schedule:                                  |                  |         |  |
| lysis   | 2019 Q1 – Q3                                       | Design Test Skid |         |  |
|         | 2019 Q4 – 2020 Q3                                  | Construct RP     |         |  |
|         | 2020 Q4 – 2021 Q1                                  | Coplete Test     | Skid    |  |
|         | 2021 Q1 – 2021 Q2                                  | Testing at GT    | Ί       |  |
|         | 2021 Q3                                            | Transport to I   | NCCC    |  |
|         | 2021 Q3 – 2022 Q1                                  | Testing at NC    | CC      |  |

|  | / |  |
|--|---|--|
|  |   |  |
|  |   |  |

### **Success Criteria**

| <b>Decision Point</b>     | Date      | Success Criteria                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Go / No-Go                | 3/31/2021 | <ul> <li>Complete design for bench scale RO<br/>continuous absorption-regeneration of</li> <li>Viable design for a commercial scale</li> <li>Successful testing of the ROTA-CAP<sup>t</sup><br/>RPB absorber and regenerator using<br/>natural gas burner flue gas:         <ol> <li>Continuous operation with absorber<br/>together.</li> </ol> </li> </ul> |
|                           |           | 2. Quick startup and shutdown duration                                                                                                                                                                                                                                                                                                                       |
|                           |           | <ul> <li>Successful long duration testing:</li> </ul>                                                                                                                                                                                                                                                                                                        |
| Completion of the project | 3/31/2022 | 1. Cumulative 1000 hr testing with real                                                                                                                                                                                                                                                                                                                      |
|                           |           | 2. Minimal solvent carryover and degra                                                                                                                                                                                                                                                                                                                       |



- OTA-CAP<sup>tm</sup> skid utilizing operation.
- e unit verified.
- <sup>ptm</sup> bench scale skid with g simulated gas and
- r and regenerator coupled
- on for the skid.
- al flue gas. adation.

# **Project Risks and Mitigation Strategies**

### **Technical Risks:**

#### 1. Scale up of rotating packed bed reactor is too problematic

1a. GTI's experience on evaluation of high-efficiency gas-liquid contactors for natural gas processing including RPB reactors

1b. CCSL's previous and current projects involving RPB reactors and other process equipment

#### 2. Energy use by RPB reactors is too high

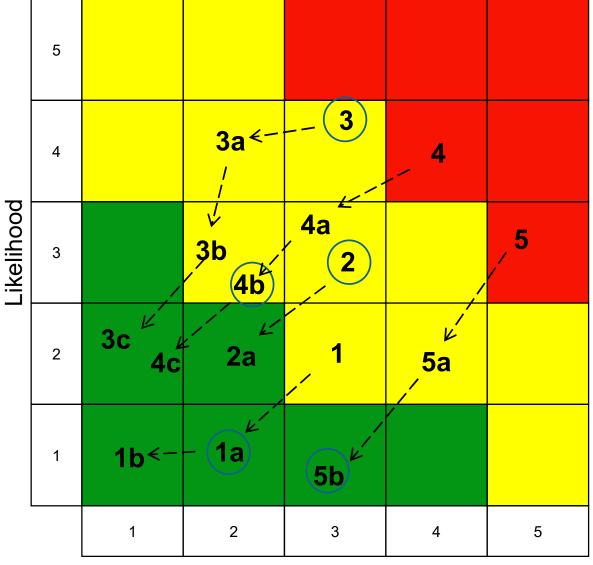
2a. Reactor design will balance the size of reactor and energy use to achieve economic scale up

### 3. Flue gas contaminants degrade solvent or solvent aerosols form on RPB reactor exit

- 3a. Solvent analysis to monitor degradation
- 3b. Liquid carryover measurement
- 3c. Include a water wash

#### 4. Not high enough capture efficiency

- 4a. CCSL solvent matched MEA performance using RPB
- 4b. Modify operating conditions to achieve desired capture efficiency
- 4c. Modify solvent concentration as necessary


### Safety Risk:

#### 5. Rotating equipment related safety

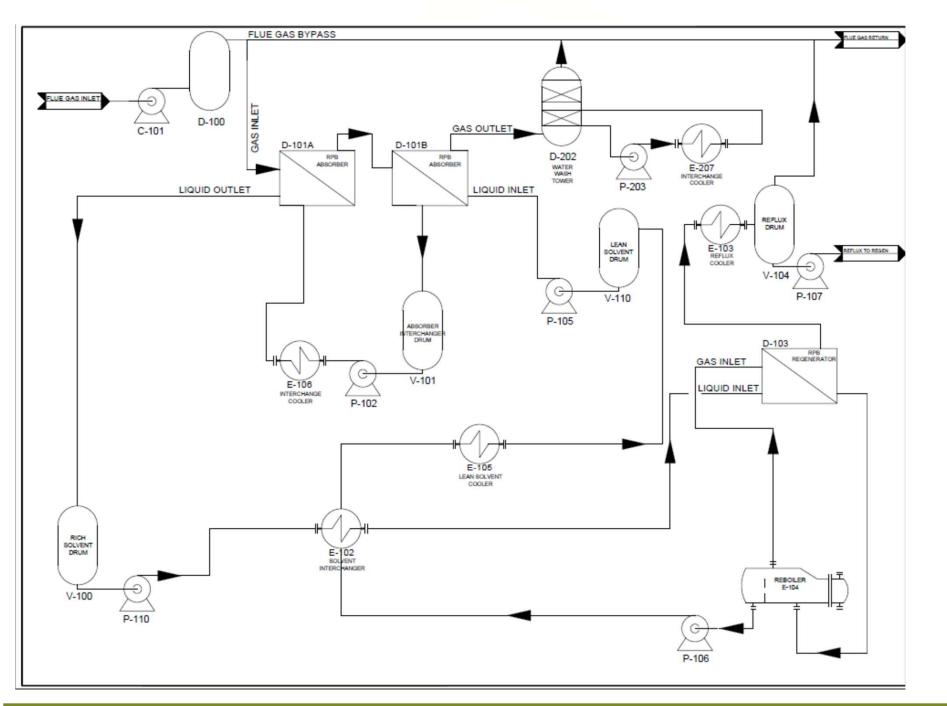
5a. GTI Engineering Team has the tools and expertise to design and evaluate rotating equipment requirements.

5b. GTI has access to prototype/one off design engineering facilities for design evaluation.

RPB's use GTI's inhouse mechanical design.






#### Consequence

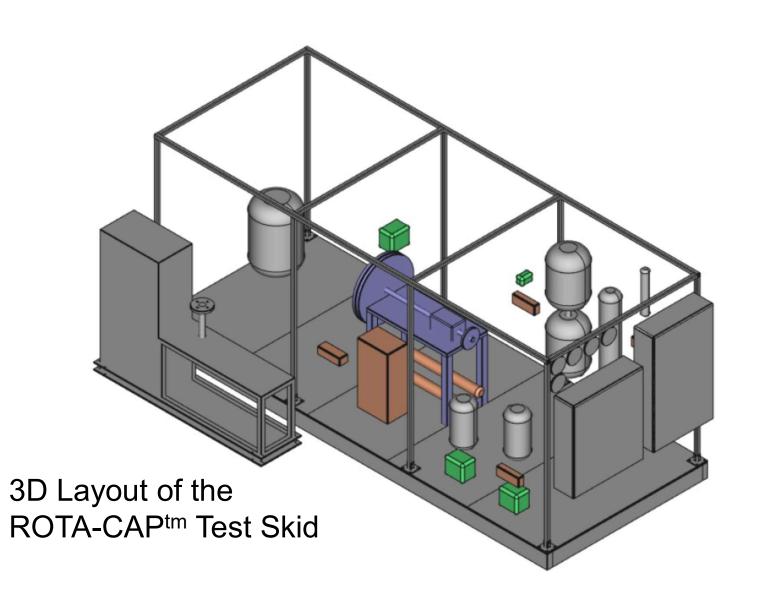
## **Progress and Current Status**





## **ROTA-CAPtm Process Flow Diagram (PFD)**




gti

### Simplified

### ROTA-CAP<sup>tm</sup> PFD

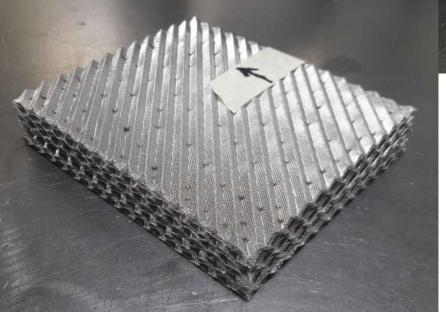
### ROTA-CAP<sup>tm</sup> has two stages of absorber RPB and one regenerator RPB with a separate reboiler.

# **ROTA-CAPtm Test Skid and Layout**





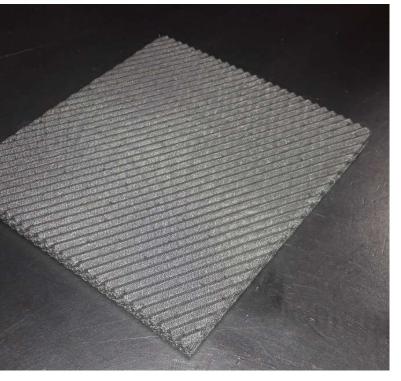




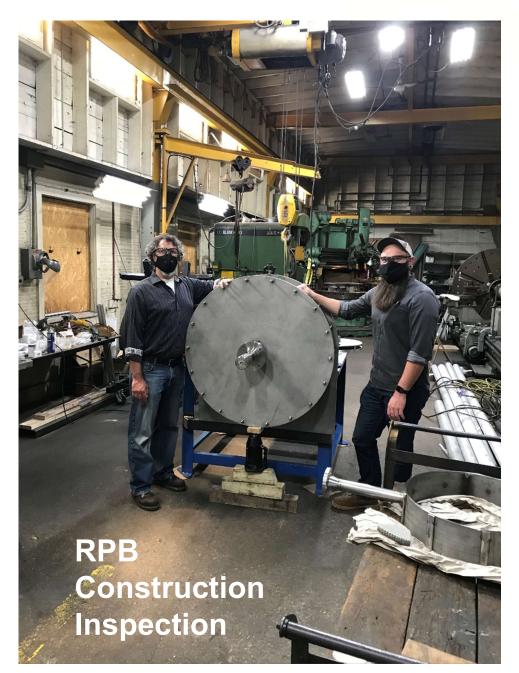

#### **ROTA-CAPtm** Power and Control Panels

### **RPB Packing Material by Montz**




Novel Packing Material for RPB manufactured by Montz (Low Density)




Mid Density Packing





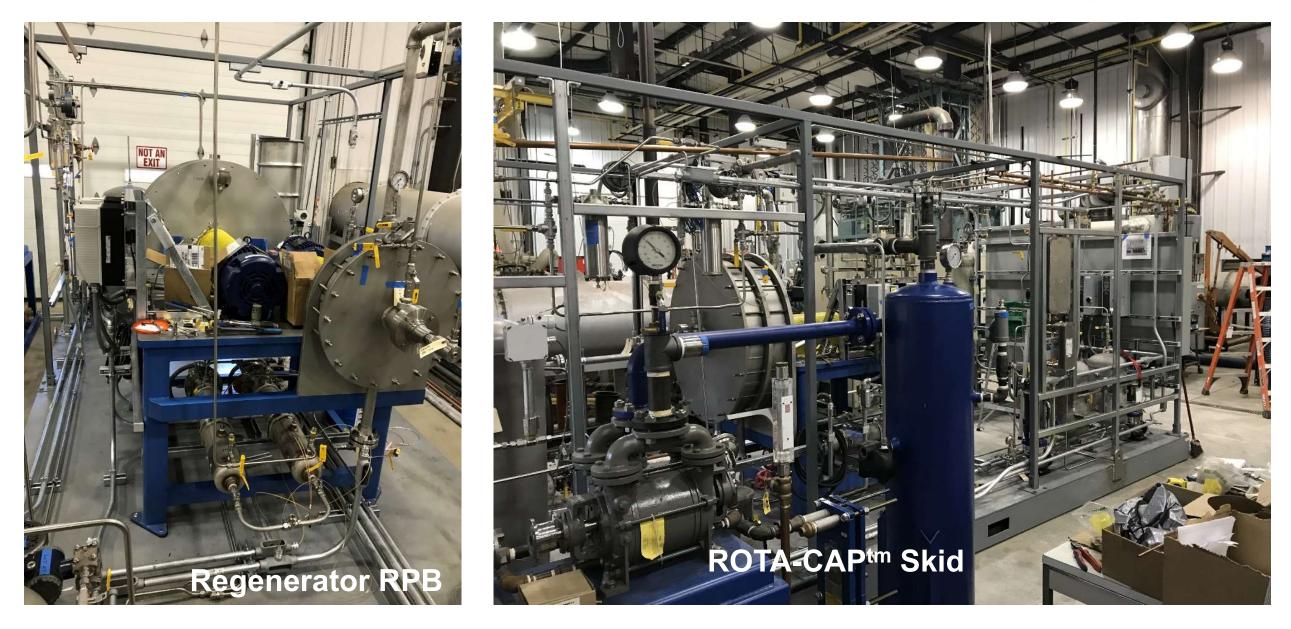


### **High Density Packing**



gti






gti





gti













## **ROTA-CAPtm: Bench Scale Test Unit**

### **Experimental Development Unit**

- 1 ton CO<sub>2</sub> per day removal capacity
- Skid size is 20 feet x 8 feet x 8 feet x 8 feet (NOT OPTIMIZED)
- RPB diameter is about 1 meter



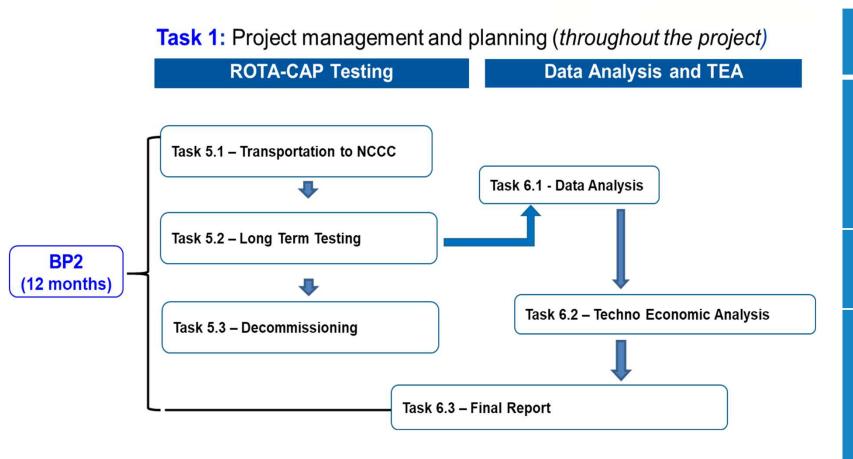


## **ROTA-CAPtm: Bench Scale Test Skid Design**

**GTI Conceptual design** and 3D skid layout

Integrated (RPB absorber and RPB regenerator), Continuous, Bench-scale, 1 TPD test skid at GTI






## **Plans for Future Testing / Scale-Up**





## **Current Project BP2 Overview**



#### **Success Criteria**

Complete design for ben ROTA-CAP skid utilizing continuous absorptionregeneration operation.

Viable design for a comm scale unit verified.

Successful testing of the CAP bench scale skid with absorber and regenerator simulated gas:

- Continuous operation absorber and regener coupled together.
- Quick startup and shu duration for the skid.





|                            | Completion<br>Date |
|----------------------------|--------------------|
| ch scale                   | 12/31/2019         |
| nercial                    | 10/1/2020          |
| ROTA-<br>th RPB<br>r using | 5/31/2021          |
| a with<br>ator             |                    |
| utdown                     |                    |

### **ROTA-CAPtm: Future Projects and Scale Up Plan**

- Evaluating different industrial • emission sources for ROTA-CAP<sup>tm</sup> applications.
  - Steel •
  - Concrete
  - Petrochemical •
- Engineering scale development unit at 2.5 TPD proposed
- Next Scale-Up unit at 10 TPD is ۲ designed
- Modular expansion to 100 TPD ۲ commercial unit





## **Summary of BP1 Work**

- ROTA-CAP<sup>tm</sup> process design was developed
- Packing material for RPBs fabricated and installed
- 2 stage RPB absorber and 1 stage RPB desorber designed and constructed
- ROTA-CAP<sup>tm</sup> skid constructed, commissioned and operated
- Parametric testing with simulated gas performed at GTI





## **Summary:**

- ROTA-CAP<sup>tm</sup> : More versatile process compared to other next generation  $CO_2$  capture technologies
- RPB reactors are agnostic to the solvent used
- First RPB absorber AND RPB regenerator integrated, continuous, bench-scale CO<sub>2</sub> capture skid
- Challenges of scale up from bench-scale to commercial scale; Maybe limited to modular design approach
- Design of seals, wall effects and area affects are hard to determine for commercial scale



### Next Step:

Bench-scale to **Pilot-scale** 

## **Acknowledgements**

Financial Support



DOE NETL

gti





### NCCC Team





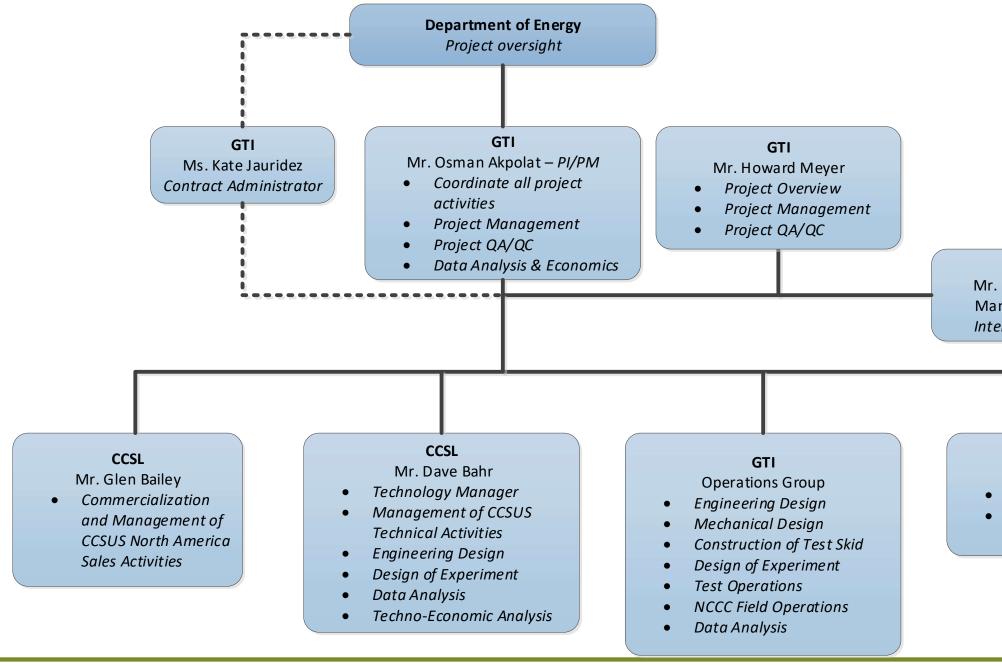



### Disclaimer

This presentation was prepared by Gas Technology Institute (GTI) as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.



# **Turning Raw Technology into Practical Solutions**


www.gti.energy



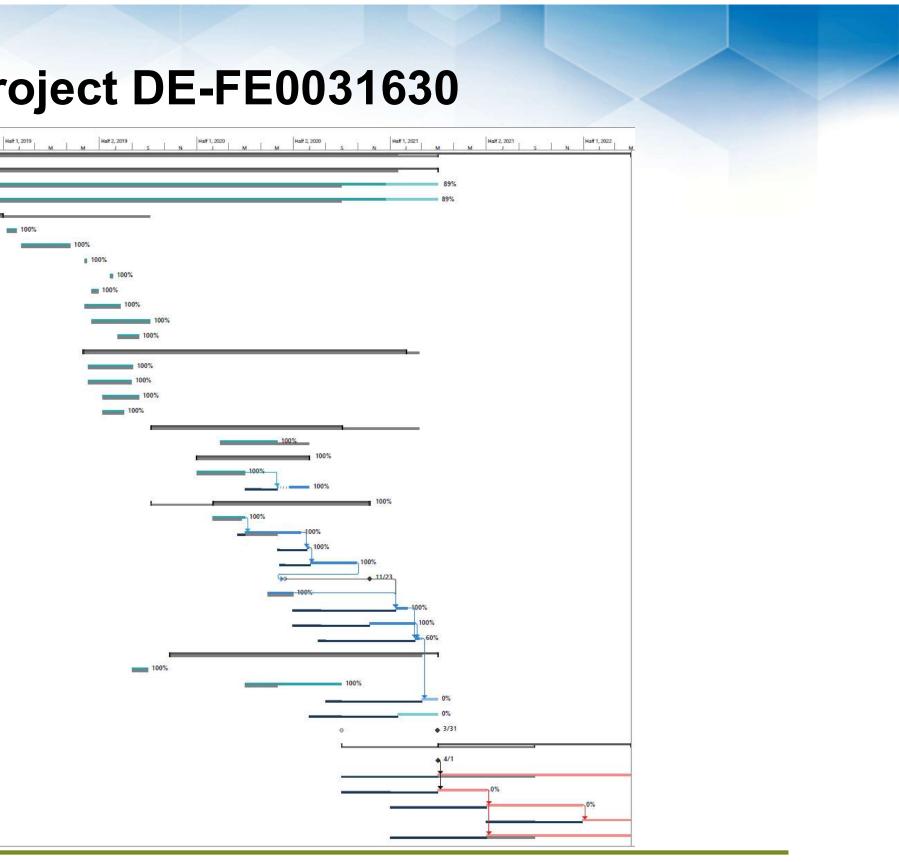




### **Planned Project Team**






**GTI** Mr. Don Stevenson Managing Director Internal consultant

#### NCCC

Mr. Frank Morton Management of Host Site Coordination of NCCC activities

## **Project Schedule - Project DE-FE0031630**

|    | Task Name                                         | Start    | Finish   |
|----|---------------------------------------------------|----------|----------|
| 1  | Project Total                                     | 10/1/18  | 3/31/22  |
| 2  | Budget Period 1                                   | 10/1/18  | 3/31/21  |
| 3  | Project Management and Planning (BP1)             | 10/1/18  | 3/31/21  |
| 4  | Preliminary Commercial Design Check               | 10/1/18  | 3/31/21  |
| 5  | Design and Costing of the Bench-scale Test Skid   | 10/1/18  | 12/31/18 |
| 6  | Prepare PFD                                       | 1/7/19   | 1/25/19  |
| 7  | Prepare P& IDs                                    | 2/4/19   | 5/6/19   |
| 8  | Perform HAZOP at GTI                              | 6/3/19   | 6/7/19   |
| 9  | Perform HAZOP with NCCC                           | 7/22/19  | 7/26/19  |
| 10 | Finalize equipment and instrument lists           | 6/17/19  | 6/28/19  |
| 11 | Prepare DRAFT RPB design                          | 6/3/19   | 8/9/19   |
| 12 | RPB Mechanical Design                             | 6/17/19  | 10/4/19  |
| 13 | Data Acquisition and Control system design        | 8/5/19   | 9/13/19  |
| 14 | Construction of Test Skid                         | 6/1/19   | 1/31/21  |
| 15 | Construction of liquid ring blower                | 6/10/19  | 9/2/19   |
| 16 | Procurement of Skid Equipment                     | 6/10/19  | 8/30/19  |
| 17 | Design and construction of reboiler               | 7/8/19   | 9/13/19  |
| 8  | Skid frame construction                           | 7/8/19   | 8/16/19  |
| 19 | BenchScale Unit Construction                      | 10/7/19  | 10/2/20  |
| 20 | Control System and HMI Programming (GTI)          | 2/15/20  | 5/31/20  |
| 21 | PLC and Control System                            | 1/1/20   | 7/31/20  |
| 22 | Control System Component Purchase                 | 1/1/20   | 3/31/20  |
| 23 | Control System Panel Fabrication (GTI)            | 6/1/20   | 7/31/20  |
| 24 | RPB Construction (Ability)                        | 2/1/20   | 11/23/2  |
| 25 | RPB Packing Design (Montz-GTI)                    | 2/1/20   | 4/1/20   |
| 26 | RPB Packing Construction (Montz)                  | 4/1/20   | 7/15/20  |
| 27 | RPB Packing Shipment (Montz)                      | 7/27/20  | 7/31/20  |
| 28 | RPB Final Assembly (Ability)                      | 8/3/20   | 10/28/20 |
| 29 | RPB Delivery (Ability)                            | 11/23/20 | 11/23/20 |
| 30 | High Voltage Control Enclosure Fabrication (Wesa) | 5/15/20  | 6/30/20  |
| 31 | Electrical Wiring Installation (Wesa)             | 1/11/21  | 2/1/21   |
| 32 | Test skid Assembly (GTI)                          | 11/23/20 | 2/15/21  |
| 33 | Skid Shakedown (GTI)                              | 2/16/21  | 3/1/21   |
| 34 | Parametric Testing with Simulated Gas             | 11/11/19 |          |
| 35 | Test Matrix Development                           | 9/1/19   | 9/30/19  |
| 36 | Test Matrix Review                                | 4/1/20   | 9/30/20  |
| 37 | Simulated Gas Test Campaign                       | 3/2/21   | 3/31/21  |
| 38 | Data Analysis and Long-term Testing Planning      | 1/15/21  | 3/31/21  |
| 39 | GO / NO-GO Decision Point                         | 3/31/21  | 3/31/21  |
| 40 | Budget Period 2                                   | 4/1/21   | 3/31/22  |
| 41 | Start BP2                                         | 4/1/21   | 4/1/21   |
| 12 | Project Management and Planning (BP2)             | 4/1/21   | 3/31/22  |
| 13 | Transportation and Commissioning                  | 4/1/21   | 7/1/21   |
| 14 | Reliability and Operability Testing               | 7/2/21   | 12/29/23 |
| 45 | Decommissioning                                   | 12/30/21 | 3/31/22  |
| 46 | Data Analysis, TEA, and Final Report              | 7/2/21   | 3/31/22  |



41

