

Modular Production of Olefins from Natural Gas

Congjun Wang, Sittichai Natesakhawat, Christopher Matranga, Jose Lopez, Setrak Tanielyan, Daniel Guerrero, Raghbir Gupta

FWP-1022467

2021 Carbon Management and Oil and Gas Research Project Review Meeting, August 2021

Solutions for Today | Options for Tomorrow

Presentation Outline

- **Project Overview**
- **Technical Progress**
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis, Optimization, and Characterization of Catalysts
 - Performance Testing of catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- **Conclusion and Future Work**

Previous Work & Motivation

Adapted from: H. M. Torres Galvis, K. P. de Jong, *ACS Catal.* 3, 2130–2149 (2013).

- 2016-2019: Nanostructured Fe on Carbon low temp syngas to olefins catalyst developed
- NETL catalyst among best performing in literature
 - High CO conversions
 - Good C₂-C₄ olefin selectivity
 - Long lifetimes (300+ hours)
- Low temp olefins production from natural gas helps environment
 - Alternative to natural gas flaring/venting
 - Alternative to high temp catalytic cracking used w/petroleum feedstocks

Project Overview

Project Objectives:

- Integrate patent-pending NETL catalyst into a modular natural gas to olefins process
- Characterize performance and cost of modular process using experiments and paper-based process modeling
- Conduct preliminary TEA to evaluate commercial potential.

ChemCatChem 11, 1625-1632 (2019).
International Patent Application filed 01/2020,
publication number WO 2020/150129 A1.

Susteon

Project Approach

- **Establish Industry Collaboration to Guide Research & Tech Transfer**
 - Cooperative Research and Development Agreement (CRADA) est. w/Susteon
 - Formal agreement signed Dec 2020
- **Integrate Catalyst into a Modular Natural Gas to Olefins Process**
 - 1) **Convert Natural Gas to Syngas w/Catalytic Plasma Reactor**
 - Proprietary technology, owned by Susteon LLC, provided at **NO COST** to project
 - Process conditions modified to produce 0.7-1 ratio of H₂/CO syngas
 - Provides mass/energy data for process development/modeling
 - 2) **Convert Syngas to Olefins with Nanostructured Fe/C Catalyst**
 - Developed by NETL 2016-2019
 - One of the best performing FTO catalyst reported in literature
 - Reaction studies provide mass/energy balance for FTO process development/modeling
 - 3) **Develop Paper-based Process Model as Initial Estimate of Performance/Costs**
 - Aspen or other package to model full NG to Olefins process
 - Gas cleanup/separations, other units, will be "off the shelf" from modeling software
 - Goal is to create non-granular, process model to capture important details/costs, & direct future work

Project Timeline

3 Technologies Evaluated:

- **Non-thermal Catalytic Plasma Reactor:** Natural Gas to Syngas Production
- **Nanostructured Fe Catalysts:** Syngas to Olefins Production
- **Integrated Modular Natural Gas to Olefins Process:** Paper-based Process Modeling & Preliminary TEA

Approximate Project Timeline

- **Year 1:** Catalyst and Plasma Reactor Evaluation/Shakedown, Initial Process Development/Evaluation
 - Evaluate Fe/C catalyst at realistic industrial conditions
 - Evaluate plasma reactor at wet/dry reforming conditions to produce 0.7-1 ratio of H₂/CO
 - Utilize mass/energy balance data for process modeling & preliminary TEA
 - **Go/No Go Decision 10/1/2021**
- **Year 2:** Materials and System Scale Up
 - Hire specialized external vendor to make catalyst in 50 Kg batches
 - Evaluate performance at bench scale w/comparison to previous results
 - Refine process model and TEA
- **Year 3:** Pre-pilot Testing and Evaluation
 - Evaluate 50 Kg batches in appropriate pre-pilot scale system
 - Further refine process model/TEA
 - Utilize TEA to estimate commercial potential of modular natural gas to olefins process at scale

Presentation Outline

- Project Overview
- Technical Progress
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis of catalysts
 - Performance testing catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- Conclusion and Future Work

Natural Gas to Syngas w/Plasma Reactor System

Dry Methane Reformation

Dry Methane Reforming Summary

Operational Parameters				CH ₄ Conversion, %	Efficiency parameters		
CO ₂ /CH ₄	Temp	CH ₄ Res Time	Plasma Voltage		CO ₂ Conversion, %	H ₂ Selectivity, %	CO Selectivity, %
Mol/mol	°C	s	V				
4.0	200	6	No plasma	3.3	10.8	1.8	8.6
			15,000	13.4	8.0	36.2	66.8
			17,000	40.5	20.8	40.7	50.2

Reference Data Files (Year 2021):

- Table 1. NETL_Apr_20
- Table 2. NETL_Apr_28
- Table 3. NETL_July_07

Catalytic Non-Thermal Plasma (CNTP) reactor developed in collaboration with

Susteon

Presentation Outline

- Project Overview
- Technical Progress
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis of catalysts
 - Performance testing catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- Conclusion and Future Work

Syngas to Olefins w/Nanostructured Fe/C

Two-step synthesis of carbon support and iron oxide catalysts

Carbon Support

carbon
nanosheets
(catalyst support)

“Rose Petal” Structure

~10 nm Fe particles

Fe on Carbon Support

carbon support

Fe_xO_y on carbon support

Fe Before Rxn

Fe After Rxn

Synthesis details: Zhou et. al. ChemCatChem 2019, 11, 1625–1632

U.S. DEPARTMENT OF
ENERGY

Syngas to Olefins w/Nanostructured Fe/C

- Previous synthesis method from 2016 too small of scale for current project needs
- Switched to larger crucible used to make sufficient sized batches for internal/external testing in 2020/2021
- This caused unexpected and significant changes to catalyst material that caused **unexpected project challenges**

2016: 10s of milligrams per batch (small crucible)

2021: multi-grams per batch (large crucible)

2021 Catalyst

2016 Catalyst

XRD

U.S. DEPARTMENT OF
ENERGY

Syngas to Olefins w/Nanostructured Fe/C

- 2021 Studies found immediate issues w/performance:
 - Reactivity was lower or samples deactivated w/time
 - More paraffins produced than in 2016 work
 - Sample density was lower than in 2016 work
- These issues not observed in 2016 studies
- Changes are likely result of new synthesis scale up

Syngas to Olefins w/Nanostructured Fe/C

Major Sample Issues Were Identified:

- K levels were varying, unexpectedly
- Surface areas of carbon support 10X larger
- TPR illustrates other reactivity differences

Identified a rinsing step during synthesis as being major issue for this.

Temperature Programmed Reduction

Impact of K-level on Selectivity

Surface area of 2016 (130) catalyst: 81 m²/g
Surface area of 2021 catalysts: ~1,000 m²/g

Syngas to Olefins w/Nanostructured Fe/C

2 Approaches Chosen to Address Sample Issues

#1) 2021: New rinsing & K loading method developed
(needs additional optimization)

#2) Return to 2016 method of small batch synthesis & accumulate large batch for testing
(first rxn testing scheduled week of 8/16/2021)

Syngas to Olefins w/Nanostructured Fe/C

Activity & stability

Pretreatment:

400 °C, 1 bar, H₂, 50 sccm, 3 h

Reaction:

350 °C, 20 bar, $F_{\text{tot}} = 100$ sccm, WHSV = 30,000 cc/g_{cat}/h

Catalyst	Feed CO/H ₂ /N ₂	H ₂ /CO	TOS (h)	CO conversion (%)	FTY ($\mu\text{mol}_{\text{CO}}/\text{g}_{\text{Fe}}/\text{s}$)
130	45/45/10	1	90	73	1355
206	30/60/10	2	400	40	560

U.S. DEPARTMENT OF
ENERGY

Syngas to Olefins w/Nanostructured Fe/C

HC product selectivity

Pretreatment: 400 °C, 1 bar, H₂, 50 sccm, 3 h

Reaction: 350 °C, 20 bar, F_{tot} = 100 sccm, WHSV = 30,000 cc/g_{cat}/h

For H₂/CO = 1, CO/H₂/N₂ = 45/45/10; For H₂/CO = 2, CO/H₂/N₂ = 30/60/10

Comparing Fe/C Technology to SOTA

Overall catalyst performance among the best reported in the literature

2021 and 2016
NETL catalysts
at 90 hr TOS

O/P ratio: 4.91
vs 3.45

U.S. DEPARTMENT OF
ENERGY

Chem. Soc. Rev., 50, 2337-2366 (2021).

Presentation Outline

- Project Overview
- Technical Progress
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis of catalysts
 - Performance testing catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- Conclusion and Future Work

Modular NG to Olefins Process Model and TEA

Status:

- Susteon leading process development/modeling effort as part of its in-kind contributions to CRADA agreement
- Experimental mass/energy data sets are being generated (data presented earlier) from plasma set up at SHU and the Fe/C reaction studies at NETL.
- Initial process model was set up in Aspen. Detailed model will be developed as datasets become available.

Presentation Outline

- **Project Overview**
- **Technical Progress**
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis of catalysts
 - Performance testing catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- **Conclusion and Future Work**

Next Steps

- **Catalyst stability is #1 technical challenge & project risk**
 - We have identified pathways to address this new & unexpected challenge
 - Methods for controlling K content
 - Returning to “small batch” synthesis and completing study with this catalyst instead of “scaled up synthesis” approach.
 - Future work will **REQUIRE** us to dive deeper into catalyst stability/regeneration issues
 - We anticipate being able to initiate TEA with current results
- **Process Modeling & TEA Study will be started using experimental inputs from plasma and catalyst study**
- **Go/No-Go Milestone, 10/1/2021: Complete process modeling study and provide preliminary TEA. If manufacturing costs are 25% lower, or better, project is expected to move forward.**

APPENDIX

Natural Gas to Syngas w/Plasma Reactor System

Steam Methane Reformation
 $\text{CH}_4 + \text{H}_2\text{O} \rightarrow 3\text{H}_2 + \text{CO}$

Catalytic Non-Thermal Plasma (CNTP) reactor developed in collaboration with

Mixed Steam Methane Reformation
 $2\text{CH}_4 + \text{H}_2\text{O} + \text{CO}_2 \rightarrow 5\text{H}_2 + 3\text{CO}$

Steam Methane Reforming Summary

Operational Parameters				Efficiency Parameters		
$\text{H}_2\text{O/CH}_4$	Temp	CH_4 Res Time	Plasma Voltage	CH_4 Conversion, %	H_2 Selectivity, %	CO Selectivity, %
Mol/mol	°C	s	V			
4.0	460	6	15,000	No Plasma	32.8	96.9
				Plasma 15.0kV	48.7	92.9
						5.1

Mixed Methane Reforming Summary

Operational Parameters				Efficiency Parameters		
$\text{H}_2\text{O/CH}_4$	Temp	CH_4 Res Time	Plasma Voltage	CH_4 Conversion, %	H_2 Selectivity, %	CO Selectivity, %
Mol/mol	°C	s	V			
4.0	460	6	15,000	No Plasma	33.1	95.7
				CO ₂ feed ON, NO Plasma	29.0	94.9
				CO ₂ feed ON Plasma 15 kV	42.3	93.1
						1.8
						3.2
						7.3

Jose Lopez, Setrak Tanielyan, Daniel Guerrero, Raghbir Gupta

U.S. DEPARTMENT OF
ENERGY

Natural Gas to Syngas w/Plasma Reactor System

Steam Methane Reformation with CNTP reactor to generate Syngas

Catalytic Non-Thermal Plasma (CNTP) reactor developed in collaboration with

Steam Methane Reformation

Mixed Steam Methane Reformation

Table 1. Syngas synthesis by thermo-catalytic conversion of methane and steam with & w/out plasma discharge. Ratio of $\text{H}_2\text{O}/\text{Methane}$ is 4:1, methane residency time is 6s, catalyst charge (Clariant Reformax 330) = 20 cc. Electrical power supply voltage for plasma operation is 15 kV at a set frequency of 10 kHz.

Operational Parameters				Efficiency Parameters		
$\text{H}_2\text{O}/\text{CH}_4$	Temp	CH_4 Res Time	Plasma Voltage	CH_4 Conversion, %	H_2 Selectivity, %	CO Selectivity, %
Mol/mol	°C	s	V			
4.0	460	6	15,000	No Plasma	32.8	96.9
				Plasma 15.0kV	48.7	92.9
						5.1

Operational Parameters

$\text{H}_2\text{O}/\text{CH}_4$	Temp	CH_4 Res Time	Plasma Voltage	Efficiency Parameters		
Mol/mol	°C	s	V	CH_4 Conversion, %	H_2 Selectivity, %	CO Selectivity, %
4.0	460	6	15,000	No Plasma	33.1	95.7
				CO ₂ feed ON, NO Plasma	29.0	94.9
				CO ₂ feed ON Plasma 15 kV	42.3	7.3

Table 2. Mixed process for Syngas production by thermo-catalytic conversion of CO_2 , CH_4 and H_2O with & w/out plasma discharge. Ratio of $\text{H}_2\text{O}/\text{CH}_4$ is 4:1, ratio of CO_2/CH_4 = 1:2, residence time is 6s, and catalyst charge (Clariant Reformax 330) = 20 cc. Electrical power supply voltage for plasma operation is 15kV at a set frequency of 10 kHz.

Natural Gas to Syngas w/Plasma Reactor System

Dry Methane Reformation with CNTP reactor to generate Syngas

Dry Methane Reformation

Table 3. Syngas production by thermo-catalytic conversion of CO_2 and CH_4 with & w/out plasma discharge. Ratio of CH_4 and CO_2 = 1, residence time is 6s, catalyst charge (Johnson Matthey CP1444) = 20 cc. Electrical power supply voltage to generate plasma is 15 kV and 17 kV at a set frequency of 10 kHz.

Operational Parameters				Efficiency parameters			
$\text{H}_2\text{O}/\text{CH}_4$	Temp	CH_4 Res Time	Plasma Voltage	CH_4 Conversion, %	CO_2 Conversion, %	H_2 Selectivity, %	CO Selectivity, %
Mol/mol	°C	s	V				
4.0	200	6	No plasma	3.3	10.8	1.8	8.6
			15,000	13.4	8.0	36.2	66.8
			17,000	40.5	20.8	40.7	50.2

Reference Data Files (Year 2021):

- Table 1. NETL_Apr_20
- Table 2. NETL_Apr_28
- Table 3. NETL_July_07

Syngas to Olefins w/Nanostructured Fe/C

Many recent catalysts show lower selectivity (O/P ratio) and/or activity/stability

Correlation of K and selectivity (O/P ratio)

Surface area of 2016 (130) catalyst: 81 m²/g
Surface area of 2021 catalysts: ~1,000 m²/g

Clear differences from previous catalysts and K concentration an important parameter – better control of synthesis conditions.

U.S. DEPARTMENT OF
ENERGY

FTO Testing

FT Unit

Testing Protocol

1. Activation

Catalyst weight	200 mg
Temperature	400 °C
Pressure	1 bar
Reducing gas	UHP H ₂
Flow rate	50 sccm
Reduction time	3 h

2. Cooling

Temperature	350 °C
Cooling gas	UHP N ₂
Flow rate	50 sccm

3. Reaction

Temperature	350 °C
Pressure	20 bar
Feed gas	13/30/45% CO, 13/60/45% H ₂ , 74%/10% N ₂
Flow rate	100 sccm
WHSV	30,000 cc/g _{cat} /h
Time on stream	>300 h