Modular Production of Olefins from Natural Gas

Congjun Wang, Sittichai Natesakhawat, Christopher Matranga, Jose Lopez, Setrak Tanielyan, Daniel Guerrero, Raghubir Gupta

FWP-1022467

2021 Carbon Management and Oil and Gas Research Project Review Meeting, August 2021

SETON HALL UNIVERSITY

Project Overview

- Technical Progress
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis, Optimization, and Characterization of Catalysts
 - Performance Testing of catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- Conclusion and Future Work

Previous Work & Motivation

Adapted from: H. M. Torres Galvis, K. P. de Jong, *ACS Catal.* 3, 2130–2149 (2013).

- 2016-2019: Nanostructured Fe on Carbon low temp syngas to olefins catalyst developed
- NETL catalyst among best performing in literature
 - High CO conversions
 - Good C2-C4 olefin selectivity

- Long lifetimes (300+ hours)
- Low temp olefins production from natural gas helps environment
 - Alternative to natural gas flaring/venting
 - Alternative to high temp catalytic cracking used w/petroleum feedstocks

Project Objectives:

- Integrate patent-pending NETL catalyst into a modular natural gas to olefins process
- Characterize performance and cost of modular process using experiments and paper-based process modeling
- Conduct preliminary TEA to evaluate commercial potential.

ChemCatChem 11, 1625-1632 (2019). International Patent Application filed 01/2020, publication number WO 2020/150129 A1.

Project Approach

- Establish Industry Collaboration to Guide Research & Tech Transfer
 - Cooperative Research and Development Agreement (CRADA) est. w/Susteon
 - Formal agreement signed Dec 2020
- Integrate Catalyst into a Modular Natural Gas to Olefins Process
 - 1) Convert Natural Gas to Syngas w/Catalytic Plasma Reactor
 - Proprietary technology, owned by Susteon LLC, provided at <u>NO COST</u> to project
 - Process conditions modified to produce 0.7-1 ratio of H2/CO syngas
 - Provides mass/energy data for process development/modeling
 - 2) Convert Syngas to Olefins with Nanostructured Fe/C Catalyst
 - Developed by NETL 2016-2019
 - One of the best performing FTO catalyst reported in literature
 - Reaction studies provide mass/energy balance for FTO process development/modeling

3) Develop Paper-based Process Model as Initial Estimate of Performance/Costs

- Aspen or other package to model full NG to Olefins process
- Gas cleanup/separations, other units, will be "off the shelf" from modeling software
- Goal is to create non-granular, process model to capture important details/costs, & direct future work

Project Timeline

3 Technologies Evaluated:

- Non-thermal Catalytic Plasma Reactor: Natural Gas to Syngas Production
- Nanostructured Fe Catalysts: Syngas to Olefins Production
- Integrated Modular Natural Gas to Olefins Process: Paper-based Process Modeling & Preliminary TEA

Approximate Project Timeline

- Year 1: Catalyst and Plasma Reactor Evaluation/Shakedown, Initial Process Development/Evaluation
 - Evaluate Fe/C catalyst at realistic industrial conditions
 - Evaluate plasma reactor at wet/dry reforming conditions to produce 0.7-1 ratio of H2/CO
 - Utilize mass/energy balance data for process modeling & preliminary TEA
 - Go/No Go Decision 10/1/2021
- Year 2: Materials and System Scale Up
 - Hire specialized external vendor to make catalyst in 50 Kg batches
 - Evaluate performance at bench scale w/comparison to previous results
 - Refine process model and TEA
- Year 3: Pre-pilot Testing and Evaluation
 - Evaluate 50 Kg batches in appropriate pre-pilot scale system
 - Further refine process model/TEA
 - Utilize TEA to estimate commercial potential of modular natural gas to olefins process at scale

- Project Overview
- Technical Progress
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis of catalysts
 - Performance testing catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- Conclusion and Future Work

Dry Methane Reformation $CH_4 + CO_2 \rightarrow 2H_2 + 2CO$

Dry Methane Reforming Summary

Reference Data Files (Year 2021):

Table 1. NETL_Apr_20 Table 2. NETL_Apr_28 Table 3. NETL_July_07

Catalytic Non-Thermal Plasma (CNTP) reactor developed in collaboration with Sustem

Jose Lopez, Setrak Tanielyan, Daniel Guerrero, Raghubir Gupta

- Project Overview
- Technical Progress
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis of catalysts
 - Performance testing catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- Conclusion and Future Work

NATIONAL ENERGY TECHNOLOGY LABORATORY

Two-step synthesis of carbon support and iron oxide catalysts

Synthesis details: Zhou et. al. ChemCatChem 2019, 11, 1625–1632

Fe_xO_v/CNS

Fe₃O₄ v

60

40

50

- Previous synthesis method from 2016 too small of scale for current project needs ٠
- Switched to larger crucible used to make sufficient sized batches for internal/external testing in 2020/2021
- This caused unexpected and significant changes to catalyst material that caused **unexpected project challenges**

2021 Catalyst

- 2021 Studies found immediate issues w/performance:
 - Reactivity was lower or samples deactivated w/time
 - More paraffins produced than in 2016 work
 - Sample density was lower than in 2016 work
- These issues not observed in 2016 studies
- Changes are likely result of new synthesis scale up

ATIONAL

13

Syngas to Olefins w/Nanostructured Fe/C

Major Sample Issues Were Identified:

- K levels were varying, unexpectedly
- Surface areas of carbon support 10X larger
- TPR illustrates other reactivity differences

Identified a rinsing step during synthesis as being major issue for this.

Temperature Programmed Reduction

Impact of K-level on Selectivity

Surface area of 2016 (130) catalyst: 81 m²/g Surface area of 2021 catalysts: ~1,000 m²/g

2 Approaches Chosen to Address Sample Issues

#1) 2021: New rinsing & K loading method developed (needs additional optimization)

as-synthesized

carbon support

2.4 wt% Fe/ 3.2 wt%K

#2) Return to 2016 method of small batch synthesis & accumulate large batch for testing (first rxn testing scheduled week of 8/16/2021)

2021: New "Black Box" Method to Control K & Fe

Loadings

(IP Sensitive Details)

Activity & stability

Pretreatment: 400 °C, 1 bar, H₂, 50 sccm, 3 h <u>Reaction</u>: 350 °C, 20 bar, $F_{tot} = 100$ sccm, WHSV = 30,000 cc/g_{cat}/h

HC product selectivity

Pretreatment: 400 °C, 1 bar, H₂, 50 sccm, 3 h

<u>Reaction</u>: 350 °C, 20 bar, $F_{tot} = 100$ sccm, WHSV = 30,000 cc/g_{cat}/h

For $H_2/CO = 1$, $CO/H_2/N_2 = 45/45/10$; For $H_2/CO = 2$, $CO/H_2/N_2 = 30/60/10$

Comparing Fe/C Technology to SOTA

Chem. Soc. Rev., 50, 2337-2366 (2021).

- Project Overview
- Technical Progress
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis of catalysts
 - Performance testing catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- Conclusion and Future Work

Modular NG to Olefins Process Model and TEA

Status:

- Susteon leading process development/modeling effort as part of its in-kind contributions to CRADA agreeement
- Experimental mass/energy data sets are being generated (data presented earlier) from plasma set up at SHU and the Fe/C reaction studies at NETL.
- Initial process model was set up in Aspen. Detailed model will be developed as datasets become available.

- Project Overview
- Technical Progress
 - Natural gas to syngas w/plasma reactor
 - Syngas to olefins w/nanostructured Fe/C catalysts
 - Synthesis of catalysts
 - Performance testing catalyst for syngas to olefins synthesis
 - Modular natural gas to olefins process modeling and preliminary TEA
- Conclusion and Future Work

Next Steps

- Catalyst stability is #1 technical challenge & project risk
 - We have identified pathways to address this new & unexpected challenge
 - Methods for controlling K content
 - Returning to "small batch" synthesis and completing study with this catalyst instead of "scaled up synthesis" approach.
 - Future work will **REQUIRE** us to dive deeper into catalyst stability/regeneration issues
 - We anticipate being able to initiate TEA with current results
- Process Modeling & TEA Study will be started using experimental inputs from plasma and catalyst study
- Go/No-Go Milestone, 10/1/2021: Complete process modeling study and provide preliminary TEA. If manufacturing costs are 25% lower, or better, project is expected to move forward.

APPENDIX

APPENDIX

Susteon Muniversity

Catalytic Non-Thermal Plasma (CNTP) reactor developed in collaboration with

U.S. DEPARTMENT OF

13:(4)

Mixed Steam Methane Reformation $2CH_4 + H_2O + CO_2 \rightarrow 5H_2 + 3CO$

Steam Methane Reforming Summary

Operational Parameters					Efficiency Parameters		
H ₂ O/CH 4	Temp	CH₄ Res Time	Plasma Voltage		CH₄ Conversion, %	H ₂ Selectivity, %	CO Selectivity, %
Mol/mo I	°C	S	V				
4.0	460	6	15,000	No Plasma	32.8	96.9	1.7
4.0				Plasma 15.0kV	48.7	92.9	5.1

Mixed Methane Reforming Summary

Operational Parameters					Efficiency Parameters		
H ₂ O/CH 4	Temp	CH₄ Res Time	Plasma Voltage		CH₄ Conversion, %	H₂ Selectivity, %	CO Selectivity, %
Mol/mo I	°C	S	v				
4.0	460	6	15,000	No Plasma	33.1	95.7	1.8
				CO ₂ feed ON, NO Plasma	29.0	94.9	3.2
				CO ₂ feed ON Plasma 15 kV	42.3	93.1	7.3

Steam Methane Reformation with CNTP reactor to generate Syngas

eam Methane Reformation

$$CH_4 + H_2O \rightarrow 3H_2 + CO$$

Mixed Steam Methane Reformation $2CH_4 + H_2O + CO_2 \rightarrow 5H_2 + 3CO$ **Table 1.** Syngas synthesis by thermo-catalytic conversion of methane and steam with & w/out plasma discharge. Ratio of $H_2O/Methane$ is 4:1, methane residency time is 6s, catalyst charge (Clariant Reformax 330) = 20 cc. Electrical power supply voltage for plasma operation is 15 kV at a set frequency of 10 kHz.

Operational Parameters					Efficiency Parameters			
H ₂ O/CH ₄	Temp	CH₄ Res Time	Plasma Voltage		CH₄ Conversion, %	H ₂ Selectivity, %	CO Selectivity, %	
Mol/mol	°C	s	V					
4.0	460	6	15,000	No Plasma	32.8	96.9	1.7	
				Plasma 15.0kV	48.7	92.9	5.1	

Operational Parameters						Efficiency Parameters		
H ₂ O/CH ₄	Temp	CH₄ Res Time	Plasma Voltage			CH₄ Conversion, %	H₂ Selectivity, %	CO Selectivity, %
Mol/mol	°C	S	V					
4.0	460	6	15,000		No Plasma	33.1	95.7	1.8
					CO ₂ feed ON, NO Plasma	29.0	94.9	3.2
					CO ₂ feed ON Plasma 15 kV	42.3	93.1	7.3

Table 2. Mixed process for Syngas production by thermo-catalytic conversion of CO_2 , CH_4 and H_2O with & w/out plasma discharge. Ratio of H_2O/CH_4 is 4:1, ratio of $CO_2/CH_4 = 1:2$, residence time is 6s, and catalyst charge (Clariant Reformax 330) = 20 cc. Electrical power supply voltage for plasma operation is 15kV at a set frequency of 10 kHz.

Jose Lopez, Setrak Tanielyan, Daniel Guerrero, Raghubir Gupta

Dry Methane Reformation with CNTP reactor to generate Syngas

Dry Methane Reformation $CH_4 + CO_2 \rightarrow 2H_2 + 2CO$

Table 3. Syngas production by thermo-catalytic conversion of CO_2 and CH_4 with & w/out plasma discharge. Ratio of CH_4 and $CO_2 = 1$, residence time is 6s, catalyst charge (Johnson Matthey CP1444) = 20 cc. Electrical power supply voltage to generate plasma is 15 kV and 17 kV at a set frequency of 10 kHz.

Operational Parameters					Effic	eters	
H ₂ O/CH ₄	Temp	CH₄ Res Time	Plasma Voltage	CH₄ Conversion, %	CO ₂ Conversion, %	H ₂ Selectivity, %	CO Selectivity, %
Mol/mol	°C	S	V				
			No plasma	3.3	10.8	1.8	8.6
4.0	200	6	15,000	13.4	8.0	36.2	66.8
			17,000	40.5	20.8	40.7	50.2

Reference Data Files (Year 2021):

Table 1. NETL_Apr_20 Table 2. NETL_Apr_28 Table 3. NETL_July_07

Jose Lopez, Setrak Tanielyan, Daniel Guerrero, Raghubir Gupta

FTO Testing

FT Unit

Testing Protocol

1. Activation

Catalyst weight20Temperature40Pressure1 kReducing gasUHFlow rate50Reduction time3 k

2. Cooling

Temperature Cooling gas Flow rate

3. Reaction

Temperature Pressure Feed gas Flow rate WHSV Time on stream 200 mg 400 °C 1 bar UHP H₂ 50 sccm 3 h

> 350 °C UHP N₂ 50 sccm

350 °C 20 bar 13/30/45% CO, 13/60/45% H₂, 74%/10% N₂ 100 sccm 30,000 cc/g_{cat}/h >300 h

