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Motivation: Real-Time Forecasting N=|NATIONAL

Real-Time Forecasting
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Vision: Transform reservoir management decisions

“Advanced Control Room”

through rapid analysis of real time data to visualize forecasted behavior in an advanced

control room “human-in-the-loop” format.

Real time means in seconds to minutes—rapidly enough to inform the decision.

Forecasted behavior means pressure evolution, injection/production rates,

@ The rise of intelligent oil fields

Shell and other energy companies use
control rooms like this one in Malaysia
to monitor and analyse live data

Q

Changing times

Other sectors, such as healthcare and financial services, were early
adopters of digital technologies and big data.

The oil and gas industry has been slower to adapt. But it is catching up as

companies seek to unlock more energy at less cost.

In July, Baker Hughes and General Electric's oil and gas businesses

merged, creating a larger oil field services company looking to capture and

analyse growing data volumes.

In the USA, ConocoPhillips is using data to drill wells more quickly. UK-

based BP is planning a big increase in the company's ability to gather and
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hydrocarbon recovery, storage efficiency, etc.

/ Potential Operational Decisions \

* How to adjust production rates and pressures to maximize
recovery, sweep efficiency, economics,...

* How to adjust CO, injection & brine production in multiple
wells to maximize storage and minimize pressure plume

* Where to place infill wells to increase total recovery

* When to inject fluids for managing reservoir pressure to
increase total recovery
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Vision: Accurate Real-time Forecasting of Fractured Reservoirs

MSEEL DOE Field Site Real-time Pressure Management Dashboard
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Phase 1 Goals: Enable real-time forecasting at MSEEL to predict the pressure
dependent behavior relative to recovery efficiency

Initial simulation of
drainage along
fracture network.

Natural fractures
around a single
stage in MIP-3H

Fracture network along entirety of MIP-3H

U.S. DEPARTMENT OF




Real-tfime forecasting demo
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High drawdown (blue) vs low drawdown (red)
with no fracture closure
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High drawdown (blue) vs low drawdown (red)
with fracture closure
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Key Tools Developed in Phase 1 for Phase 2 CO, Injection Case

« Cost-efficient machine learning approaches to reservoir imaging and
design

 Transfer Learning and Multi-Fidelity Methods
- Site Behavior Libraries

« Graph-based machine learning emulators for fractured systems
* Methods to combine reservoir forecasting and economics frecasting




WVU Characterization ML Tools

Tri-axial accelerometer and
borehole imager
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Drill string borehole imager and vibration sensor.

Drill String Acceleration
Data Analysis

Low Fidelity Approaches
Integrated with
High Fidelity Approaches
to make Smart Decisions

Fracture

Shmin Intensity
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Data Acquisition
and
Preprocessing

Information
Extraction and
Denoising

Image Dataset
Enrichment

Deep Learning
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Transfer Learning and Multi-Fidelity Methods

Production rate (mol/L)
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“Behavior Library” that allows operators to tailor pressure drawdown for
optimum recovery.

Decision: Drawdown slowly or rapidly?
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Workflow for Fractured Systems using Machine Learning and
Graphs to Accelerate Physics-Based Reservoir Models
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Role of Technoeconomic Analysis (TEA) in Evaluating Pressure
Drawdown Strategies

Cumulative gas production curves under
« Traditional production of unconventional oil large and small drawdown cases

and gas wells is aimed at acquiring high initial _ o0
production via rapid pressure draw down = Crossover  gond)
* Rapid drawdown allows the operator to realize é _,,,.W
returns on investments quickly a o
g b s e - Y
° ° ° = Approach can capture the uncertain
[ Prellmlnqry mOdellng hqs Shown ‘l'hqi' g du:tovariablelur?linw:nsiteparrtamgers
increasing flowing bottom hole pressure by ° - [
reducing the choke setting at the wellhead : _
can result in a greater of production over time Time

Modeling process of technical-economic boundary of FECM/NETL
Unconventional Shale Well Economic Model

Cost Factors

» Analysis is needed to cross-check the

economic viability of the pressure Hosens CaptalCosts |- MO S e —
management strategies resulting from the Well Completion Design | Operating | :
model predictions | s
oo .. . Production over time | it Cost _ NG () = CO(x) | ) = | | Break-even Analysis
o Facilitates development of optimization (Gas, O, Water) corsision Taxes WPV = ) iy NPVe) =0 n SMBLD)
SChemeS ThOT bOlOnce Market Conditions | Royalties
1. Improving recovery efficiencies of | (Rycocarbon merketprce) |
Unconvenhondl reserVOIrS J = minimal desired rate of return on investment for RAef\tfee:I:.IaexS 1 POSitiv?Ccf,?XS)? Flows
2. Afttaining desired economic rates of return well o pad x (h percen)

1= discount rate (in percent)
= number of time pericds (months)
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NETL Economic Tools — Unconventional Shale Well Economic Model

Well Number -
Data Input and Summary Sheet | -
| User Inputs | Output Summary ]
Well Data™ Economic Data Input Project Economics
Farmation Gas Price [$/01cF) Per Well
Reservoir Type il Price [$EB) Hek Cash Flow 03]
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Harizantal Length [ft) Foyalty (%) IRF (%) (3
Grozz Purfarated Interval [ Severance Tax (%] Levelized Cost ]
Porforated Intervallength [ 0 | [f) #d Walarum I3} P @ 10% 0]
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Leags Acquisition Cozts [} Operating Cost Input Per Production Yolume
Site Dvelopment Casts 6] Per Well Capex [$01c)
Driling Oiperatizn Co i ‘wéell Operating (4% elliyr] Opex [$01c)
Completion Operation Co 1 Lease Operating Exprenze [$welityr] Royaltics [$Mcf)
Gaz Gathering System Cos i Workover [$ell) SeveranceTax [$Mcf)
Gaz Delivery Trunkline Cos &3] “Water Riecycling? Dizposal [$/Eb] Ad Yalorum [$#Mcf)
Site Clasure Costs &3] Diperating 44 3] Federal Tazes [$M1<F)
Capital GiA %) Per Pad
Per Pad ‘whell Dperating [ elliyr] Well Production ¥olume Summary
Lease Acquisition Costs ] Lease Operating Expense (3% elityr) Gaz (Mcf)
Site Development Costs &3] Warkaver [$0ell) ol [0 ] (Bbn
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Gas Delivery Trunkling Gosts ] Mumber of Wells Fer Fad
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Model evaluates economics of

unconventional shale wells on a per well and
per pad level

The model allows for direct comparison of
alternative technologies through multiple
profitability indicators

Model Input

* Production data for the life of the well
e Can compare the economics of 700 wells in a single model run

Model Outputs (month or pad basis)

e Net cash flow, NPV, IRR, EBITDA, breakeven price,
payout month, and payout year




NETL Economic Tools — Unconventional Shale Well Economic Model

NETL is augmenting the existing Task 7 Phase | efforts by leveraging the Unconventional Shale Well
Economic within the LANL/WVU workflow to enable a robust TEA analytical capability

Monthly Production Revenue vs. Time Cash Flow Over Time
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Research Approach: 1) Infuse time-series production data generated from LANL that explore various drawdown strategies
2) Evaluate and analyze modeling results

3) Perform sensitivity analyses on economic parameters to assess impact on result outcomes
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Phase 2 Planning: CO, sequestration in saline aquifer

o Pressure management is equally important for injecting fluid and CO,,
sequestration

= Optimize CO2 without sefting off felt seismic events
= Optimize most gas in without harming reservoir (inverse of O&G)

- How do we fransition oil sector to storage sectore
= Big companies not really doing it (optimize storage but going after product)
= Will be small independents but they don’t have R&D

o Integrate task 7 tools with tasks 1-6

= MSEEL WVU tools: 1) leaks we can characterize, 2) seismic hazard
characterization, 3) ML to characterize data

Transfer learning and multi-fidelity machine learning tools

Scenario libraries

Graph-based machine learning emulators for fractured systems
Economic tools integrated with machine learning workflows is unique
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Questions?
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Thank you!

viswana@lanl.gov




