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Motivation: The Scope of the Natural Gas Emissions Problem

*Over 300k miles of pipeline used to ”
transport natural gas. [1] .'

e Economic Cost of Methane Leaks:
2 billion dollars per year. [2]

* Powerful Greenhouse Gas— &E
Emissions in US accounted for -
1.624 x 108 Metric Ton CO, \ G

Equivalent.[3]

* Increased regulatory scrutiny of
industrial emissions creates a L erste Ppeines
greater need for monitoring Intrasate Pipefines

Source:
te C h n O I Ogy- Energy Information Administration, Office of Oil & Gas,

Matural Gas Division, Gas Transportation Information System A,

Legend

3 [2] A.J. Marchese, et al. Science. 7204 (2018) eaar7204.
[3] Kort, E. A.; Frankenberg, C. Costigan, K.R.; Lindenmaier, R.; Dubey, M. K; Wunch, D. Geophys. Res. Lett, 2014, 41, 19, 6898



https://afdc.energy.gov/fuels/natural_gas_distribution.html

Sources of Methane Emissions (2019)

Nat. Gas Infrastructure Livestock Coastal Wetlands
156 mt/yr [1] 62 kt/yr [1] 153 kt/yr [1]
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: [3] s lEESS Laeds-
A sensing system for CH, monitoring must differentiate between these sources.

[1] EPA Inventory of US GHG Emissions and Sinks: 1990-2019

[2] 3.D. Maasakkers, et al., Environ. Sci. Technol. 50 (2016) 13123-13133.
[3] Parker et al. Remote Sensing of Enviornment, 211 (2018), 261-275.




Current Methods of CH, Monitoring

Technology Satellite / | Lab (GC/MS/ | Portable IR Catalytic | SC Gas | Mixed Our
Aircraft | CRDS) Gas Sensors Potential
Sensors Sensors TeCh n Ology
Cost Very High Med ($30k) Low Low Low
High ($100k+)
Area Square Square Feet Square Feet Square Square Square Feet
Resolution Miles Feet Feet
Sensitivity ppb ppb ppb ~1% LEL | ppm ppm (100
level ppb  using
PDT)
Robustness N/A Low Low Med Med High
NG Yes Yes Yes No No Yes
component
gas selectivity
Stability N/A Requires Optical  paths | Sensor Sensor High
frequent must be kept | drift drift stability
maintenance clean over 1000s
of hours.
Size weight, Very Large, 3- | Medium kg, 10s | Small.g W | Small,g W | Small, g W
power Large 20kg,10-100s | W
w

[1] EPA Inventory of US GHG Emissions and Sinks: 1990-2019

[2] J.D. Maasakkers, et al., Environ. Sci. Technol. 50 (2016) 13123-13133.
[3] Parker et al. Remote Sensing of Enviornment, 211 (2018), 261-275.




Technology Approach
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Multi-element MPE Sensors

* MPES devices rely on a difference in catalytic activity
to generate a voltage upon exposure to test gases.

* Selectivity can be tuned by material selection,
geometry, applied current bias.

* Low cost, robust, and well suited for mass-fabrication.

* Combined with ceramic additive manufacturing to
enable rapid prototyping of materials for sensitivity.

*Sensor Composition:
— Indium Tin Oxide (ITO): CH,

- La,«Sr,,-.CrO, (LSC): C > 1 Hydrocarbons -
O8rT0A s ) y Additive Manufacturing of Sensor 15 mm

- AuNH, Substrate
- Substrate: YSZ (Gen 1-4) - CSZ; MSZ (Gen 5) A Four Electrode Sensor

- Electrolyte: Porous YSZ




Video





Sensor Evolution

Spring 2020 Fall 2020 Spring 2021 Summer 2021

Generation 1: Generation 2: Generation 3: Generation 4: Generation 5:

Razor blade cast 3D printed substrate. First 4 electrode Radial configuration Robocasted low ionic

substrate. Parts are Substantially increased design incorporating to equalize electrode conductivity (CeO,-

very brittle. robustness. Used as Pt, LSC, Au, and ITO areas ZrO,) substrates for
demonstration for Au/Pt electrodes on one ' 2

electrode substrate enhanced sensitivity




Sensor Test Procedure

JeEEE - == -

2000 bom CH - » |TO vs. Pt
100 pprm N 3 < » LSCvs. Pt
i - » AU Vs. Pt

Gas Mixer
Gas Manifold CH, BMAT 1028
Data Collection: Wetlands  Natural Gas
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Yttria-Stabilized-Zirconia (YSZ) Substrates
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Using CSZ produces up to 3.5x enhancement in sensitivity to CH, and C_H,




Machine Learning

Approach

Fully Connected, Feed Forward ANN

ML Needs: Identification and Quantification

ML process: Atrtificial Neural Networks

- Mimics the interconnected networks of biological neurons which can
automatically learn relations between inputs and outputs.

- Does not require human to define functional form - helps to automatically
resolve difficult to predict cross interference effects with complex mixtures.

- Can be readily deployed on portable computing hardware.

Train separate artificial neural networks for identification and quantification.

.

Output
Identification

OR

Quantification

3%

CH, = 1000 ppm




|dentification
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Quantification Test Error Results
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PROTOTYPE Integrated Wireless Sensing Platform §& S€ENSORCOMM

L 3 \ W

loT Gateway Readout Prototype

Integrated Prototype

sensorcomm | Methane Sensing for Natural Gas Infrastructure | Integrated Wireless Sensing Platform
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RESEARCH  Direction for Next BP

AAeenanne f'
! [ RESEARCH
Vi VO H K ', 1 + Effects of sampling rate
o v L . thil, * DC offset
. L - L.
L [Era] H » Sensitivity to noise
« Aliasing

« Migration to integration

Fef Ch = HP 34T8A Multimeter | Test Ch = S5CT Prototype

Compare Sequence

Migration to Integration

sensorcomm | Methane Sensing for Natural Gas Infrastructure | Integrated Wireless Sensing Platform
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Accomplishments to Date

* Developed additive manufacturing processes for fabrication of multi-electrode MPES devices.

* Developed ANN algorithms that showed >98% accuracy in identification of simulated wetlands,
agricultural, and natural gas emissions. Demonstrated < 1.5% ppm error for methane in these three
mixture types.

* Developed I-o0-T portable electronics packages to perform data acquisition, logging, and wireless
data transmision.

* Results were presented at the ECS PRIME 2020, IMCS 2021 conferences. We have submitted a
manuscript on the first year’s work to the Journal of the Electrochemical Society which has been
accepted with revisions.




Lessons Learned — Research Challenges

* Unanticipated Research Difficulties

Safety protocols to stop spread of COVID in our lab were implemented early in the project and
were successful in preventing disruptions of research work throughout the last year.

Significant delays due to COVID in sourcing materials and equipment from vendors including
custom gas mixtures and furnace components. Delays in international shipping are causing
some vendors to have lead times in excess of 10 weeks.

Future: If possible, have multiple vendors available to source from. Plan to purchase well in
advance of when parts or supplies are needed.




Synergy Opportunities

* Our sensing application is of interest to multiple energy technology
areas where the ability to identify and quantify gas mixtures is
helpful:

* Monitoring of hydrogen leaks from hydrogen energy infrastructure
and combined H,/CH, (hy-thane) infrastructure.

* Characterization of bio-methane composition.

* Emissions monitoring of energy production systems.




Project Summary

Key Findings:

* We have demonstrated that we can both perform identification and
quantification with artificial neural networks for mixtures of CH,, NH,, and

Natural Gas

* Temperature can be used as an additional sensitivity tuning parameter for the
gases of interest.

* Identification network: 100% test accuracy (5 mixture, 2 temperature)
* Quantification network: Error < 2% ppm CH, (1000-4000 ppm, 2 temperature)
Future Work

* Decreasing Sensitivity Limits Tested: We would like to push sensitivity to
below 1000 ppm. Preconcentration can also enhance sensitivity.

* Expand research into developing sensors for H, detection which may be of
interest as environmental monitoring for industry and the renewable energy
future.

* Quantify other sub-components of natural gas mixture: Ethane and heavy HC
content

. U.S. DEPARTMENT OF

'ENERGY

Fossil Energy

Funding:

US Department of Energy
Office of Fossil Energy
Award DE-FE0031864
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Benefit to the Program

“Advanced Technologies to Mitigate Methane Emissions and Increase Efficiency of the Natural Gas
Transport Infrastructure” program seeks technologies to monitor for methane emissions from pipeline
infrastructure.

Our technology benefits the program by developing:

* Low cost, robust electrochemical sensors that can be field deployed for emissions monitoring.
* Machine learning technologies for quantification and identification of natural gas emissions.

* |-o-T technology for portable data recording and transmission.

If successful, these technologies can be used to screen pipeline infrastructure for leaks and after repairs
are made, reduce both loss of valuable product and lower GHG emissions. This work also supports
other efforts at emissions monitoring for the energy industry.




Project Overview — Goals and Objectives

. — Fabricate by additive manufacturing techniques sensors
Compile and update PMP/TMP documents. Publication of capable of detecting methane, ethane, and other constituent

papers and presentation of results at professional conferences. gases with sufficent sensitivity and selectivity to identify
methane emissions from NG infrastructure.

Develop artificial neural networks to quantify and identify natural Develop a portable electronics package capable of performing
gas mixtures. We seek accuracy of 98% for identification and < sensor reading measurements and mobile data transmission.
2.5% ppm for quantification. Integrate into a single package the sensors developed in Task 2.

Develop Field Test Plan in collaboration with UNM NSF-CISTAR industrial partners.
Perform a limited field test to evaluate sensor capability under real conditions and
compile results into a report.

I,
U4




Organization Chart
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Gantt Chart — Task 1 / Task 2

Current Project Progress

Assigned Year 1 Year 2 Year 3

Task
Resources
Ql Q2 Q3 Q4 Ql Q2 Q3 Q4 Ql Q2 Q3 Q4

Task 1.0 Project M_anagement UNM / SCT
and Planning

Task 1.1 Project Management Plan UNM / SCT (@] A
Task 1.2 - Tech;lca)lr(])gy Maturation UNM / SCT o A
Task 1.3 - Publication and
Presentation of Results UNM/SCT 0 A
Assigned
Task Resources Year 1 Year 2 Year 3
Ql Q2 Q3 Q4 Q1 Q2 Q3 Q4 Ql Q2 Q3 Q4
Task 2.0 Sensor Fabrication UNM
Subtask 2.1 - Sensor
Prototyping UNM o A
Milestone 2.1 - Prototype 2-
UNM &
element sensor
Subtask 2.2 - Sensor Element
Evaluation UNM 0 A
Subtask 2.3 - Screen Printed
Sensor Fabrication UNM 0 A
Milestone 2.3 - Multi-Element *
Sensor UNM




Gantt Chart — Task 3

Current Project Progress

Assigned
Task Resources Year 1 Year 2 Year 3
Q1 Q2 Q3 Q4 Ql Q2 | Q3 [ Q4 Ql Q2 [ Q3 | Q4
Task 3.0 Artificial Neural
Network Development UNM/SCT
Subtask 3.1 - Laboratory
Collection of Training Data UNM © A
Milestone 3.1 - Initial -
Training Data Batch
Subtask 3.2 - Gas Type UNM o A

Identification Training
Milestone 3.2 - - Optimized
ANN Algorithm for UNM &
Identification
Subtask 3.3 - Gas Species
Quantification ANN Training
Milestone 3.3 - Optimized
ANN Algorithm for UNM *
Quantification
Subtask 3.4 - Deployment
of ANN algorithm on Mobile | UNM/SCT 0} A
Hardware
Milestone 3.4 - ANN on
Development Board

UNM O A

UNM/SCT ' *




Gantt Chart — Task 4

Current Project Progress

Assigned
Task Resources Year 1 Year 2 Year 3
Task 4.0 - Development of an
Integrated Sensing Platform Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Subtask 4.1 - Sensor Interface

Development SCT 0 A

Milestone 4.1 - 2-Element Sensor scT %
Interface Device Completed
Subtask 4.2 - Multi-Element Sensor scT 0 A

Interface

Milestone 4.2 - Multi-Element
Sensor Interface w/ wireless SCT *
transmission Device Completed

Subtask 4.3 - Integration of ANN

Inference Hardware SCT 0 A

Milestone 4.3 - Completed Sensor
Package

UNM/SCT v E¥




Gantt Chart — Task 5

Current Project Progress

Task Assigned Year 1 Year 2 Year 3
Resources
Task 5.0 - Field Test and
Validation Ql | Q2 | Q3 | Q4| Q1 JQ2 | Q3 | Q4| Q1 | Q2| Q3 | Q4
Subtask 5.1 - Arrange for
Access to Field Test Facility UNM 0 A
Milestone 5.1 - Field Test
Location Selected UNM *
Subtask 5.2 - Development
of Field Test Plan and UNM/SCT 0 A

Completion of NEPA
Documentation

Comprehensive Field Test | UNM/SCT
Plan (Decision Point 1)

Subtask 5.3 - Field Test UNM/SCT O A
UNM/SCT *

Milestone 5.2 - Field Test
Results Completed
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