Electrocatalytically Upgrading Methane to Benzene in a Highly Compacted Microchannel Protonic Ceramic Membrane Reactor DE-FE0031871

Joshua Tong Clemson University

U.S. Department of Energy National Energy Technology Laboratory 2021 Carbon Management and Oil and Gas Research Project Review Meeting August 2021

Presentation Outline

- Technical Status
- Accomplishments to Date
- Lessons Learned
- Synergy Opportunities
- Appendix

(b) Cross section of a module comprised of HCM-PCMRs

Schematic description of highly compacted microchannelPhoto of integrated additive manufacturing
and laser processing (I-AMLP)

Research To Be Done

- Discovery of high surface area SAC for MDA
- Verification of the improved MDA performance in tubular PCMRs
- Discovery of high-performance PCMR component materials
- Manufacturing of HCM-PCMRs by I-AMLP technique
- Testing of MDA performance in HCM-PCMRs
- Estimation of the energy conversion efficiency of HCM-PCMRs

High Surface SAC for MDA

SAC Fe on mesoporous SiO₂

(a) (b) Methane conversion product of SAC Fe on mesoporous $SiO_2^{(0.2 \text{ wt\% Fe})}$ without (a)/with (b) ZSM-5.

Our new SAC Fe mesoporous SiO_2 catalyst showed benzene and toluene production at 800°C, which is 250°C lower than the reported Fe@SiO₂ catalyst. Mixed with ZSM-5, the benzene onset production decreased to 500°C. Higher production rate were obtained.

High Surface SAC for MDA

SAC Rh on mesoporous SiO₂ (0.33wt% Rh)

Methane conversion product of SAC Rh on mesoporous SiO_2 (0.33wt% Rh). (a) MS intensity *vs.* reaction temperature, and (b) MS intensity *vs.* reaction time.

6

Our new SAC Rh mesoporous SiO_2 catalyst showed benzene production onset temperature of 250°C, which is significantly lower than the state-of-the-art Mo/Zeolite (700°C) and Fe@SiO₂ (1050°C)

Verification of MDA in PCMRs

Description of Integrated Additive Manufacturing and Laser Processing

We have updated the I-AMLP technique for manufacturing PCMRs, which can print green layers with thickness 50-500µm. The utilization of low viscous paste and laser drying allow easy printing and bonding. The laser cutting allows introduction 7 microchannels.

Verification of MDA in PCMRs

Tubular PCMRs Prepared by I-AMLP

We can obtain tubular PCMRs with effective area larger than 25 cm² by I-AMLP method.

Verification of MDA in PCMRs Microstructure of Tubular PCMRs fabricated by I-AMLP

The PCMRs with fully densified thin electrolyte and highly porous electrode can be achieved by I-AMLP.

Verification of MDA in PCMRs

Fuel Cell Preformation of Tubular PCMRs

The tubular protonic ceramic fuel cell can achieve peak power density around $_{10}$ 380 mW/cm² at 650°C.

High-Performance PCMR Materials

Ba₇Nb₄MoO₂₀ based Single-Phase Co-ionic Conductor 5000 Ba₇Nb₄MoO₂₀ 4000 800 ntensity (a.u.) Z" (Ω cm²) 600 3000 550 400 2000 200 1000 1000 2000 0 60 Z' (Ω cm²) 20 (°) 450 °C 500 °C 1.0 550 °C 150 600 °C 650 °C 0.8 ^power density (mW/cm² /oltage (V) 100 0.6 0.4 50 0.2 50 um 0.0 0.0 0.2 0.4 0.6 Power density (A/cm²)

Synthesized state-of-the-art BNM co-ionic conductor, obtained the 11 conductivity of 3.6 mS/cm², and achieved acceptable initial fuel cell result.

High-Performance PCMR Materials

Perovskite-Fluorite Composite Co-Ionic Conductors

We can synthesize stable BCZY-YDC perovskite-fluorite composites by one-pot polymeric gelation method.

High-Performance PCMR Materials

Perovskite-Fluorite Composite Co-Ionic Conductors

The perovskite and fluorite phase can be^(c) well dispersed to form homogenous ¹³ composite co-ionic conductor

Manufacturing of HCM-PCMRs

Cutting Microchannel by Picosecond Laser

Picosecond laser can cut microchannels as small as 50 μ m and the aspect ratio 14 can reach to 5-6. Multiple cutting can result in large and deep channels.

Manufacturing of HCM-PCMRs

Preparation Microchannel PCMRs

interdigital channels

Manufacturing of HCM-PCMRs Sintered Interdigital Microchannel PCMRs

The interdigital channels kept well after high-temperature sintering

Manufacturing of HCM-PCMRs Microstructures of Sintered Interdigital Microchannel PCMRs

The BCZY-YDC based microchannel were fully densified. The channel width is around 200µm with acceptable accuracy.

Accomplishments to Date

Catalysts/Materials Synthesis and Characterization

- 1) Synthesized Mo-HMCM-22 for MDA reaction
- 2) Synthesized boron nitride nanosheet with the desired crystal structure, morphology, and high surface ($\sim 290 \text{m}^2/\text{g}$).
- 3) Synthesized SAC Fe on mesoporous SiO₂. The onset reaction temperature to produce benzene was as low as 700°C, 350°C lower than the reported Fe@SiO₂ catalyst.
- 4) Fe@SiO₂ (mesoporous) catalyst mixed with ZSM-5 could significantly increase the aromatic production rate. It provides a new strategy to make highly active DMA catalysts.
- 5) Rh@SiO₂ (mesoporous) catalyst could lower the benzene production onset temperature to 250°C-300°C. The mesoporous SiO₂ could significantly improve the aromatic production rate.
- 6) Synthesized phase-pure tetragonal perovskite oxide Ba₇Nb₄MoO₂₀ and achieved a total conductivity of 3.6×10⁻³ S/cm under a wet air atmosphere reached, which is even higher than that in the literature.
- 7) Perovskite-fluorite dual-phase composites with different Y amounts in the YDC phase could be prepared by the one-pot SSRS method. The XRD, BSE-SEM, and EDX characterization indicate that the perovskite-fluorite composites were formed.

Accomplishments to Date

Manufacturing and Testing of PCMRs

- 1) Prepared appropriate paste/slurry for the 3D printing of anode, electrolyte, and cathode.
- 2) Developed a new microextrusion and CO_2 laser drying combined method, allowed successfully printing one end closed anode tube with a surface area greater than $25cm^2$.
- 3) I-AMLP technique could reproducible, high-quality, and large-surface-area tubular PCMRs with a functional area larger than 25cm².
- Demonstrated a maximum power density of 325.6 mW/cm² at 650°C with a large effective area of 12.45 cm² in a tubular PCMR.
- 5) Fabricated BNM + NiO | BNM | BCFZY0.1 single cells based on new BNM co-ionic electrolyte The peak power density of this cell is about 150 mW/cm² at 650°C.
- 6) By optimizing picosecond laser cutting parameters, we have achieved the anode microchannel with an open width of less than 50µm and aspect ratios close to 7.
- 7) Manufactured interdigital microchannel PCMRs based on BCZY-YDC material. Showed fully dense microstructure, accurate control of microchannel size and good sintering behavior.

Lessons Learned

- The direct MDA is challenging work. The development of 2D catalyst has challenge. However, the mesoporous materials with high surface and porous pore can help improve this problem.
- The integration the MDA catalyst with PCMR electrode has some challenge based on zeolite powder. We solved this problem by using mesoporous silica sol-gel process.
- The sealing of PCMRs has challenge. We are trying to search different type sealants
- Some proposed compositions of materials may need change. The 2D catalyst substrates may need to change to mesoporous substrates.

Synergy Opportunities

- This project was performed by four PI/Co-PI from Clemson University and one Co-PI from ORNL.
- The PI/Co-PIs communicates extensively during the budget period 1, which integrated catalyst preparation, additive manufacturing, and electrochemical characterization together for establishing project for efficient and clean conversion natural gas.
- Some of these team members explored other fund sources inspired by the current work.
- The team is trying to submit more related proposals based on electrocatalytic protonic ceramic membrane reactors for other chemical manufacturing.

Project Summary

Key Findings

- We found new Fe/SiO₂ (mesoporous) and Rh/SiO₂ (mesoporous) SAC for MDA, which can significantly lower MDA reaction temperature. The addition of ZSM-5 can significantly improve MDA rate.
- The phase-pure and perovskite-fluorite composite co-ionic electrolyte or electrode scaffold were found.
- The I-AMLP method can successfully fabricate tubular PCMRs, which demonstrated excellent fuel cell performance.
- The I-AMLP method can successfully make interdigital PCMRs with desired microchannels.

Project Summary

Next Steps

- Further improve Fe/SiO₂ and Rh/SiO₂ SAC based on mesoporous silica. Further check zeolite effect. Quantify the MDA performance.
- Demonstrate high-performance based on the phase-pure and perovskitefluorite composite co-ionic electrolyte or electrode scaffold were found.
- Verify superior MDA in tubular PCMRs
- Improve the manufacturing of microchannel PCMRs and test the performance of PCMRs

Appendix

The following slides are appendix.

Benefit to the Program

One of the main areas of interest of DOE's Natural Gas Infrastructure Program is to develop process-intensified technologies for the upcycling of flare/venting gas (mainly CH_4) into transportable, value-added liquid products. However, the current technologies for natural gas to liquid (GTL) are facing significant challenges: 1) the deployment and intermittent operation at isolated sites often lack convenient access to electricity, make-up water, and other required services; and 2) the GTL technologies (e.g., indirect catalytic conversion of methane to liquid chemicals via synthesis gas) are confirmed to be complicated, inefficient, and environment unfriendly (enormous CO_2 emission), requiring large economies of scale to compete in existing commodity markets, and relying on extensive supporting infrastructure to be available. Thus, indirect GTL technologies are presently impractical for meeting the program's objectives.

- Development of new catalysis materials
- Highly efficient conversion at a lower temperature and 2) as separation.
- Highly efficient conversion at a lower temperature.
- Long-term efficient conversion.
- Convenient access to electricity and make-up water and highly efficient conversion at a lower temperature.
- Modular, compact, integrated, and transportable technologies.
- Technology platform capable of producing a variety of products

Project Overview

Goals and Objectives

The overarching goal is to develop a highly compacted microchannel protonic ceramic membrane reactors (HCM-PCMRs) for efficient and cost-effective methane dehydrogenation to aromatics (MDA, e.g., benzene).

BP1: Show the feasibility to apply new high surface area 2D matrix confined single transition metal catalysts for MDA; verify the improved MDA performance by tubular PCMRs with state-of-the-art catalysts.

BP2: Discover new 2D single-atom catalysts showing much better performance than the state-of-the-art $Fe@SiO_2$, Mo-HZSM-5, and Mo-HMCM22; and show the feasibility to apply new laser 3D printing technique for manufacturing microchannel PCMRs.

BP3: Manufacture modules of HCM- PCMRs by laser 3D printing technique and prove the long-term stable and efficient production of 26 benzene from methane with new 2D SACs.

Organization Chart

Gantt Chart

Task 5.0	Manufacturing of HCM-PCMRs by I-AMLP technique							
Subtask 5.1	3D printed green parts							
Milestone 5.1	Desired parts by 3D printing							
Subtask 5.2	Laser cutting microchannels							
Milestone 5.2	Microchannel width close to 50µm, depth >50µm							
Subtask 5.3	Sintering of multilayered parts							
Milestone 5.3	Crack-free and integrated sintering for more 12 layers							
Subtask 5.4	Infiltration optimization							
Milestone 5.4	Achieve active phase particles less than 100nm							
Subtask 5.5	Fabrication of HCM-PCMRs							
Milestone 5.5.1	Single microchannel PCMR							
Milestone 5.5.2	HCM-PCMR with area >20cm ²							
Task 6.0	Testing of MDA performance in HCM-PCMRs							
Subtask 6.1	HCM-PCMR assembling							
Milestone 6.1	Successfully loading of MDA catalyst into anode channels							
Subtask 6.2	MDA in HCM-PCMR							
Milestone 6.2	MDA performance in HCM-PCMR, 50% conversion at 700°C for 500h							
Subtask 6.3	HCM-PCMR analysis							
Milestone 6.3	Fully understand the catalyst and PCMR							
T ask 7.0	Estimation of the energy conversion efficiency of HCM-PCMRs							
Subtask 7.1	Models for HCM-PCMRs							
Milestone 7.1	Es tablish reas onable model							
Subtask 7.2	Estimation of process efficiency							
Milestone 7.2	Achieve methane conversion efficiency higher than other MDA process							
BP1 GNG point	Verification of the improved MDA performance in tubular PCMRs							
BP2 GNG point	SAC@2D catalyst has performance better than Fe@SiO2							
	show feasibility to manufacture by I-AMLP							
Final goal	Methane conversion >50%, aromatics/olefine selectively >90%,							
	reaction temperature <700°C, stability>500h							
	Final Technical Report							

Gantt Chart

	TECHNICAL TACKS		YEAR			R 1			YEAR 2				YE AR 3			
	TECHNICAL TASKS	Ql	œ	Q3	Q4	Q5	Q6	Q 7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	
Task 1.0	Project management and planning															
T ask 2.0	Discovery of high surface area 2D supported transition metal SAC for MDA															
Subtask 2.1	Mo-HMCM-22 and Fe@\$iO2															
Milestone 2.1	MDA performance comparable to state-of-the-art results															
Subtask 2.2	2D singe a torn catalyst for MDA															
Milestone 2.1.1	MDA performance comparable to state-of-the-art results															
Milestone 2.1.2	MDA performance increase by 50% compared to the state-of-the-art															
Task 3.0	Verification of the improved MDA performance in tubular PCMRs															
Subtask 3.1	I-AMLP of tubular PCMRs															
Milestone 3.1	PCMR, >10em2, >300mV/em2, and >200h															
Subtask 3.2	MDA in PCMRs with Fe@SiO ²															
Milestone 3.2	PCMR for MDA has performance better than Fe@\$iO2															
Subtask 3.3	MDA in PCMRs with 2D \$AC															
Milestone 3.3	PCMR for MDA has performance better than new 2D \$AC															
Task 4.0	Additively manufacture the sensor module prototypes															
Subtask 4.1	Co-ionic electrolyte															
Milestone 4.1	conductivity>0.01\$/cm, degradation <2% per 1000h															
Subtask 4.2	Triple conducting anode															
Milestone 4.2	ASR<0.1 Ω cm ² and degradation <2% per 1000h at 650 °C															
Subtask 4.3	Triple conducting cathode															
Milesteone 4.3	ASR<0.1Ω·cm2 and degradation <5% per 1000h at 650°C															
Subtask 4.4	Performance of new PCMRs															
Milestone 4.4	Cathode supported single cells with performance comparable to the state- of-the-art results															

Bibliography

1. Zeyu Zhao, Minda Zou, Hua Huang, Harrison Wofford, and Jianhua Tong, Stable Perovskite-Fluorite Dual-Phase Composite s Synthesized by One-Pot Solid-State Reactive Sintering for Protonic Ceramic Fuel Cells. Ceramics International, 2021, accepted.