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Goals and Objectives—I

Overall Project Goal

Develop and demonstrate a new technology for large-volume and
targeted comminution of rock in low permeability formations to
enhance recovery from unconventional oil and gas resources.

The technology is based on a strategically designed interaction of
multiple induced seismic pulses that assist the hydraulic fracturing
process to enhance shear and multi-planar crack formation.
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Goals and Objectives—II

Objectives

To develop and demonstrate the proposed technology, this project
will investigate two aspects of multi-source excitation:

® superposition of multiple sources of stress wave excitation
with each other to generate dynamic stresses large enough to
cause rock failure.

® interaction of dynamic stress wave loading with the main
hydraulic-fluid pressurized crack to cause transitions from
mode | (opening) to mode Il (shear) and mode Il
(non-planar) failure.
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Goals and Objectives—III

Research Focus: Year 01
@ development of damage, permeability, and porosity models
based on realistic conditions of failure under constraint and
dynamic loading rate
® development and validation of a continuum numerical
simulation model for fully-coupled hydrodynamic response and
failure

Research Focus: Year 02

development of rock stimulation technology by multi-source
excitation

Research Focus: Year 03
demonstration of the multi-source technology using lab-scale field

experiments.
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Cardinal and Timely Importance

® Realities of UOG resource development using hydraulic
fracturing:
- Recovery efficiency on the order of 10%.
- Three toggles: spacing, injectant rheology, and production
choke management.
- EOR shows promise, but is invariably limited to immediate
vicinity of fractures.
® Constraints on UOG resource development in the US:
- Space is becoming limited as infill drilling continues.
- What was done in the past was done: cannot undo a
fracturing job.
- Focus on rate-of-return (leveraged industry) versus net value.

® To sustain this, we need to access greater volumes of these
important resources in a prudent and economic manner!
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High Strain-rate Testing Setup
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Vic-3D software from Correlation
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full-field deformation response
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Schematic of Overall Experimental Setup
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Damage Progression in Rother Shale (90 degrees)
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Dynamic Damage Evolution in Rother Shale
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Dynamic Damage vs Time-01
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A)Typical Rother shale under transverse-load. B) Damage in
longitudinal direction, C) Damage in transverse direction.
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Dynamic Damage vs Time-02
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A) Typical Rother shale under longitudinal-load, B) Damage
in longitudinal direction, C) Damage in transverse direction
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Stress-wave Interactions with Weak Damaged Planes
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Micro-CT analysis

Dimensone 440, 4401560 um e X-ray micro-CT will be used

Vorelsze: 590 nm z for non-destructive analysis
of pre- and post-cracked
shale samples

® Analysis of pore greater than
1pum will be possible

® |n Rother-shale pores and
cracks contribute to less
than 1.5% porosity

Figure: MicroCT render of Rother shale
with segmented pores and cracks
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Mercury Intrusion (MIP) vs. Gas Adsorption (GA)
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Pre- and post-cracked disc samples
can be studied by MIP; GA requires
further reduction in sample size

Effect of Rother-shale sample-size
reduction on pore distribution
compared for GA and MIP

(a) GA: Particle-size reduction
increased specific pore volume; no
other information on pore-geometry
modification is accessible

(b) MIP: Enhanced pore access
(geometry) observed with particle
size reduction; negligible change in
overall pore-volume

Conclusion: MIP will be the method
for analysis of pores (3-300000 nm)
in pre- and post-cracked samples
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Prospects as a disruptive engineering technology
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Modelling to test major hypotheses: the model

Developed high-resolution numerical simulation model capable of:

® Coupled poroelasticity and multiphase flow with discrete and
continuum damage representations

® Hydraulic-fracture propagation with complete representation
of matrix and fracture

® Explicit fracture closure, opening, and tangential slip

® Full treatment of time-dependent mechanics (seismic
deformation)

® Incorporate continuum damage time evolution with damage
dependent constitutive models

G. Ren et al., "A Model for coupled geomechanics and multiphase flow in fractured porous media using embedded
meshes”, Adv. in Wat. Res., 122:pp113-130 (2019)

G. Ren and R.M. Younis, " An integrated numerical model for coupled poro-hydro-mechanics and fracture
propagation using embedded meshes”, Comp. Meth. in Appl. Mech. and Eng. 376, (2021)

G. Ren and R.M. Younis, " A Quasi-Newton method for physically-admissible simulation of Poiseuille flow under
fracture propagation”, in review.

G. Ren and R.M. Younis, "Efficient co-solution of time-step size and independent state in fluid-driven fracture
propagation simulation using embedded meshes”, in review.

Z. Han et al.,, " A model for unified fractured reservoir and seismic simulation enabled by adaptive time stepping”,

in review.
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Modelling to test major hypotheses: canonical problem 1
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Characterize damage intensity and volume as function of:
® Pulse peak pressure, P
® Pulse duration, ¢

® Pulse geometry; arc versus planar
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Canonical problem 1: results with pulsed-arc
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Canonical problem 1: results with shaped charge
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t to test major hypotheses: canonical

problem 2

R.M. Younis and Y.J. Jing. " A Computational Investigation Of Seismic Wave Focusing As A Novel Means To
Fracture Shale Reservoirs.” ECMOR XVI.
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Combined Modeling—Experimental Research Paradigm

Fracture T?ughness Calibrated Proje«_:tions
Permeability: K(D) Model for field-
Moduli: E(D) and v(D) scale

Small-Scale Conduct 2D

Experiments

Experiments

Damage: D(strain-rate) Calibrated
Permeability: K(D) Model: design
Moduli: E(D) and v(D) 2D experiments

(Re-)Calibrated Model: Conduct 3D
design 3D experiments Experiments
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