Hybrid Multifunctional Well Cement for Extreme Conditions

PI: Dr. Rouzbeh Shahsavari Rouzbeh@ccretetech.com

Outline

Project Overview
Technical Status
Accomplishments to Date
Summary

Challenges

- X Halts the Production
- X Costly remedial Jobs
- Huge Environmental Impact
- Limits Further Development Opportunities

Drawback of exiting Cement products

Primary

Remedia

- √ Halliburton's FineCem™
- √ Schlumberger's EverCrete
- ✓ Schlumberger's FuturTM
 - ✓ Halliburton's WellLifeTM
 - ✓ Baker Hughe's EnsuresetTM
 - √ Schlumberger's SqueezcreteTM
 - ✓ Halliburton's WellLockTM
 - ✓ Halliburton's SqueezeSeal[™]

Limitations

- **★**Fit-for-purpose
- **★**Cost/scarcity of additives
- **X** Trial-and-error methods
- ★ High failure Rate

HTHP Conditions

HT: phase transformations

HP: Early strength, Microchannels, etc

HTHP: Complex phenomena

- ✓ Schlumberger's FlexSTONE HT,
- ✓ Baker Hughes XtremeSet™

Courtesy: SLB

What is at stake?

How to design a reliable and multifunctional well cement that can address multiple extreme conditions (HTHP, corrosive environment, etc) at once?

- Changing backbone of well cement?
- Starting from the cement crystals?
- Modifying chemical pathways ?
- Nanoscience and nanotechnology?

Project Goals

Overall Objective: To develop the next generation of well cement with remarkable mechanical, thermal, rheological and durability properties, thus preventing offshore spill and leakage at extreme HTHP and corrosive conditions.

Phase 1: Development of hybrid-cement to offer the best nanostructure, optimum slurry, and properties for a variety of extreme conditions including HT, HP, and high acidity.

Phase II: Product validation (API, etc), cost-risk analysis, scale-up and integration with current methods and equipment used for wellbore cementing.

Methodology

Great Pumpablity

65% lower yield stress & 40% decrease in plastic viscosity

→ lower pump force/energy

Homogenous Slurry Mix

300

Ramp up and down coincide in composite slurries → no segregation

Free Fluid Tests

Control → After 3 hr Composite → After 3 hr

No free fluid with composite class H cement slurries

Extreme Conditions

Significantly higher thermal tolerance vs control sample

High Temperature & Corrosion

7 day strength after high heat and immersion in acidic solutions

Gas Leakage Performance

Leakage Barrier
Performance after
exposure to extreme
conditions

Summary

- Created a hybrid well cement prototype that exhibits enhanced strength (>30%) with minimal nanomaterials--> Cost-effectiveness
- Best synthetic conditions to create/disperse ultrathin nanomaterials in cement → Scalability.
- A stable composite slurry with no fluid loss & great pumpability via >80% lower plastic yield → requiring less pump energy in the field
- Ability to tolerate and extreme conditions such as high T, corrosion and gas leakage → preventing spill

Acknowledgments

Department of Energy

➤ NETL DE-FOA0030716 (William Fincham, Roy Long. Jared Ciferno)

