Natural Gas Hydrate Research at NETL RIC

Yongkoo Seol NETL RIC

U.S. Department of Energy National Energy Technology Laboratory 2021 Carbon Management and Oil and Gas Research Project Review Meeting August 2021

Presentation Outline

- NETL R&IC Hydrate Portfolio Overview
- Major Accomplishments
- Lesson Learned
- Synergy Opportunities
- Project Summary

NETL R&IC Hydrate Portfolio

Project Area	Tasks	Goals		
Numerical Simulation Supports	 Gas Production Prediction/Code Comparison Hydrate Accumulation Genesis in ANS 3D Model based on ML and new data framework 	 Economical recoverability for long-term gas production and recommendations on planning, execution, and analysis of field production tests 		
Coupled Processing Modeling	 THCM Code development and Modeling Sand Production Modeling Code Parallelization 	 NETL's THCM simulator for methane hydrate reservoir modeling 		
Laboratory Experimental Supports	 Hydrological/Geomechanical Property Pressure Core Analysis and Tool Development Multiscale (Core/Pore) Testing and Imaging Fundamental thermophysical properties of HBS 	 Relevant input for numerical simulations Fundamental knowledge on gas hydrate and its responses 		
Field Production Test Supports	 Shut In Procedure/Well Completion Method Engineering Support for field test design and operation 	 Engineering support needed for the planning and operation of the ANS production well test 		
Machine Learning Application	 Well log data analysis for key parameter estimation and lithofacies/hydrate morphology recognition 	 Efficient and accurate parameter estimations using new ML technique for large data analysis and model development 		
Life Cycle Assessment	 to refine the previous assessment of the total CO2 emissions associated with the gas production and consumption from ANS 	 Evaluate key contributors to the GHG emissions and the environmental impact of gas hydrate production 		
Interagency and International Collaboration	Code comparisons, Pressure Core Working Group	 Supporting success of domestic and international exploration and expedition 		

Major Accomplishment NETL's THCM simulator, Mix3HRS-GM to incorporate Sand Migration Modeling

- Goal: NETL's own state-of-the-art simulator for reliable prediction of gas production and sand production from hydrate reservoir and establishment of early warning system for excessive sand production.
- **Challenges:** Coupling reservoir deformation, hydrate dissociation and sand mobilization/migration. Progressive evolution of the coupled phenomena.
- **Approach:** NETL's THCM simulator, Mix3HRS-GM, extended its capability to model sand migration through incorporating sand-water mixture flow and sand mobilization model.
- Outcome:
 - 2D axisymmetric reservoir simulations examining the impact of heterogeneity (permeability anisotropy, hydrate saturation, hydrate dissociation, mechanical deformation) and production scenarios (depressurization rate, sand screen shut-ins).
 - Identifying key parameters determining the sand ٠ production (critical gradient, particle sizes, dry density) to be determined by experiments
- Implication: For successful long-term gas production without being interrupted by sand production, the results suggested optimal reservoir conditions and parameters.

Machine Leaning Applied to Gas Hydrate Reservoir and Basin Characterization

- Machine Learning (ML) Approaches: Provide the ability to identify and exploit underlying dependencies between input well log data and target variables that are not readily available through physics-driven models
- Application of ML techniques in Gas Hydrate Research:
 - Characterize gas hydrate reservoir and basin regions using well logs, seismic and other geologic and geophysical (G&G) data,
 - Spatial variability of hydrological and geophysical properties from a wellbore to develop reservoir models capturing 3D spatial heterogeneity of reservoir
- Results:
 - ML gas hydrate saturation prediction at one basin using information learnt at another basin (accuracy up to 92%)
 - ML recognition of pore-filling and fracture-filling gas hydrate in marine sediments (accuracy up to 85%)
 - ML lithofacies recognition in reservoir and non-reservoir sections (accuracy up to 90%)
- Implication to DOE Natural Gas Hydrates Program to obtain high precision data on gas hydrates in their natural environment and under production scenarios that secures future exploration of gas hydrate as future U.S. energy source

"Ground truth" versus predicted Sgh at the Mallik (red squares) and ANS wells (blue squares) 5

Pressure Core Characterization and Visualization Tools in NETL Gas Hydrate Laboratory

- **Goal**: <u>Characterizing HBS at core scale</u> in the form of pressure cores retrieved from the natural hydrate-bearing sediments to understand interactions between hydrate and its hosting geologic matrix.
- **Challenges**: Experimental complexity associated with hydrate stable pressure and temperature condition, and the sample heterogeneity which should be carefully reviewed before testing.
- **Approach:** <u>A suite of tool set</u> manipulates and characterizes natural hydrate bearing cores, as well as visualize methane hydrate in natural sediment pores with high resolution at its *in-situ* condition.
- **Results:** The <u>PCXT (pressure core characterization and x-ray CT visualization tools)</u> is built, and the pressure cores retrieved from Gulf of Mexico was tested. The capability of PCXT is expanded to be able to use multi-sized pressure cores.
- **Implications**: The tool set will be utilized to analyze pressure cores from Alaska (2022-2023) and Gulf of Mexico (2021-2022), which will be the key input for numerical reservoir simulation of gas production potential.

Anisotropic Permeability Cell

Triaxial Stress Chamber

High Resolution Visualization of Methane Hydrate In Natural Sediments

- **Goal**: <u>Describing the pore habit of methane hydrate in</u> <u>sediment matrix</u> for understanding natural distribution of methane hydrate, methane trace (transport and solidification) in the hydrate stability zone, and physical properties gas production
- **Challenges**: Core degradation due to hydrate dissolution, salt diffusion, mechanical disturbance which could disturbe the hydrate saturation/hydrate pore habits of natural HBS
- Approach: <u>Pressure-core Characterization and X-ray</u> <u>visualization Tools (PCXT) and the phase-contrast micro-CT</u> <u>technique</u>: develop 3D pore structures of hydrate bearing sediments and develop numerical simulation methods for flow simulation of HBS.
- Outcome: Observation of non-cementing and pore-invasive hydrate in silty sediment acquired from Gulf of Mexico. And the pore network modeling results to investigate the effect of hydrate distribution on fluids flow through a porous media acquired from a CT images.
- **Implication:** help understand natural distribution of methane hydrate, methane migration in the hydrate stability zone, physical properties, and the associated impact of fluid migration dominating potential gas production from pore scale

Hydrates in pore space of natural sediment subcored from the undisturbed fine-grained silty sediment.

Numerical simulation of fluid migration through pore \$pace based on CT images

Permeability Anisotropy in Natural Hydrate-Bearing Sediments

- Goal: <u>Quantify</u> vertical and horizontal permeability in natural sediments and <u>provide new models</u> for reservoir modeling
- **Challenges**: No existing standard testing protocols/equipment; sediments layering and heterogeneity
- Approach: <u>Customize</u> unique testing devices; <u>develop</u> novel pore network modeling schemes
- Results: Permeability anisotropy measurements; water retention curve; relative permeability curves; elegant permeability models for natural hydratebearing sediments; flow in layered sediments. Salient results are summarized in <u>9 journal</u> <u>publications</u> during FY20.
- Implications: The experimental and numerical methodologies developed through this task provide novel solutions to quantify permeability anisotropy in natural sediments, and provide direct measurements for sediments from NGHP02, GOM2, and Alaska testing sites.

Customized setup: Permeability anisotropy cell for (Left) reconstituted core with synthesized hydrate; and (right) natural core sediments.

Permeability anisotropy

Water retention curves

Lessons Learned

- 3D reservoir modeling is critical to include complicated geologic features and to refine practical 2D models.
- Characterization of pressure core is challenging as well as collecting cores, transporting and storing, and manipulating.
 Sophisticated tools for characterization, visualization, and analysis is essential.
- Collaborations on both reservoir modeling and laboratory characterization is the key to the success.
- Continuing efforts to identify new research areas and technology in gas hydrate is necessary to support carbon-neutral energy development and environmental impact awareness.

Synergy Opportunities

– Collaborations:

- Reservoir modeling for coupled processes: JOGMEC, LBNL, TAMU
- Laboratory test and comparison : AIST, LBNL, UTA, GT
- Pressure core working group: AIST, USGS, UTA, GT
- Life cycle analysis; WVU, UGSG
- Machine learning application: USGS, India
- Information sharing for advanced comprehensive analysis and improved test design and execution: Code comparison studies, inter-laboratory comparison study, discussion groups, well log data analysis
- New Research Area: global climate change impacts, carbonneutral methane production, industrial applications

Project Summary

Project Area	Key Outcomes	Future Work		
Numerical Simulation Supports	 2D/3D Geological Models for Kuparuk Site Production simulations for fixed/staged production scenarios with TOUGH+/CMG-STARS Sensitivity analysis for key parameters 	 3D Modeling for Kuparuk with updated input (geologic features and laboratory data) Model validation with field acquired data from production test 		
Coupled Processing Modeling	 Fully coupled reservoir simulator Sensitivity studies to identify major parameters for sand production Parallelized reservoir simulator for flow 	 Fully coupled THCM simulations for Kuparuk site with both geomechanical deformation and sand migration 		
Laboratory Experimental Supports	 Pressure Core Analysis and Tool Development Multiscale (Core/Pore) Testing and Imaging Hydrological/Geomechanical Property 	 Relevant input for numerical simulations Fundamental knowledge on gas hydrate and its responses 		
Field Production Test Supports	 Shut In Procedure/Well Completion Method Engineering Support 	 Engineering support needed for the planning and operation of the ANS production well test 		
Machine Learning Application	Well log data analysis and parameter estimations	 Resources potential estimation with efficiency and accuracy 		
Life Cycle Assessment		 Refine the previous assessment of total CO2 emissions associated with ANS 		
Interagency and International Collaboration	Code comparisons, Core Analysis Working Group	 Supporting success of domestic and international exploration and expedition 		

Appendix

- Benefit to the Program
- Project Overview
- Organization Chart
- Gantt Chart
- Bibliography

Benefit to the Program

• Program Goals supported:

- Comprehensive evaluations of gas hydrate accumulations at permafrost and marine sites for the purpose of assessing technical and economical recoverability for short- and long-term gas production
- Development of NETL's THCM simulator for methane hydrate reservoir simulator
- Fundamental characterization of hydrate bearing sediments for petrophysical properties
- Characterization of field-retrieved pressure cores to develop relevant input for numerical simulations
- Direct engineering solutions and recommendations for the ANS production test
- Characterization of potential environmental impacts of gas hydrate exploration, development, and use through life cycle analysis

• Project benefit:

- Assessing productivity of gas hydrate reservoirs by means of numerical simulations to support the design and operations of field programs and to assess the overall viability of gas hydrate resource development.
- Synthesizing existing data and knowledge of gas hydrates systems to create a cohesive knowledgedata framework that allows for data-driven evaluation of the gas hydrate system
- predict long-term reservoir responses during gas production including not only gas production prediction but also sediment deformation and sand migration
- Obtained petrophysical properties to provide critical input reservoir models for predicting geomechanical stability, gas production efficiency.
- High resolution pore-scale images help to establish linkages between core-scale physical properties and pore-scale hydrate habits characterization, therefore building the bridge between pore-scale and ¹³ core-scale sediment behaviors.

Project Overview

Project Goals:

- Provide the state-of-the-art experimental, modeling, and economic analysis to support planning and execution of long-term field gas production tests, predicting environmental implications and developing long-term projection of US energy asset.
- Provide pertinent, high-quality information that benefit the development of geological and numerical models and methods for predicting the behavior of gas hydrates in natural and production conditions.
- **EY20 Funding:** \$3.05 M (\$2.75 M + \$0.3 M Carryover)

Overall Project Performance Dates: 04/01/2021 – 03/31/2022

Project Participants:

- FE HQ Division Director; Timothy Reinhardt
- FE HQ Project Manager: Gabby Intihar
- NETL Technology Manager: Joseph Stoffa
- NETL Senior Fellow: Grant Bromhal
- NETL Program Manager: Sandra Borek
- NETL R&IC TPL: Yongkoo Seol

- NETL R&IC Researchers
- LRST Site Support Researchers
- ORISE Fellows
- Universities: West Virginia Univ., RPI, Georgia Tech, Pitt, Stanford, TAMU

Organization Chart

- NETL Technology Manager: Joseph Stoffa
- Senior Fellow(s): Grant
 Bromhal
- R&IC TPL(s): Yongkoo Seol
- R&IC PI(s): Yongkoo Seol, Don Remson, Tim Grant,
- FE HQ Division Director: Timothy Reinhardt
- FE HQ Project Manager: Gabby Intihar
- Program Manager: Sandra Borek

Task #	Task Leads	Team Members
Z	Sandra Borek	Jeff Ilconich (LRST)
2	Yongkoo Seol	Evgeniy Myshakin (LRST), Gabe Creason (LRST), Nagasree Garapati (WVU), Allegra Scheirer (Stanford), Laura Dafov (Stanford), Zach Burton (Stanford)
3	Yongkoo Seol	Evgeniy Myshakin (LRST), Xuerui Gai (LRST) Shun Uchida (RPI), Jeen-Shang Lin (Pitt)
4	Yongkoo Seol	Jeong Choi (LRST), Karl Jarvis (LRST), Sheng Dai (GT)
5	Yongkoo Seol	Taehyung Park (ORISE), Karl Jarvis (LRST), Bryan Tennent (LRST)
6	Don Remson Tim Grant	Ray Boswell, Jim Kirksey (MESA), Alana Sheriff (MESA)
7	Don Remson Tim Grant	Ray Boswell, Jim Kirksey (MESA), Alana Sheriff (MESA)
8	Yongkoo Seol	Ray Boswell, Jeff Ilconich (LRST) Ryder Scott Subcontractors
9	Yongkoo Seol	Evgeniy Myshakin (LRST), Leebyn Chong (LRST)
10	Yongkoo Seol	Evgeniy Myshakin (LRST), Xuerui Gai (LRST)

Gantt Chart

Task	Task Title for Current Execution Year		2020	2021	2022	2023
2	Numerical Simulations Supports for Reservoir Characterization and Performance Prediction	ł				
3	Development of Thermal-Hydro-Chemo- Mechanical Simulator for Methane Hydrate Reservoir Modeling	\downarrow				
4	Fundamental Property Characterization of Hydrate- Bearing Sediments					
5	Pressure Core Characterization and Analysis	\downarrow				
7	Methane Hydrate Well Research	ł				
8	Alaskan North Slope Engineering Support					
9	Machine Learning Application to Gas Hydrate Systems					
10	Permafrost-Gas Hydrate System in Arctic					
11	Sand Migration Lab Testing					
12	Life Cycle Assessment					

Go/No-Go TimeFrame **Project Completion**

Current Progress as of Aug. 2021 🔶 On Schedule 🔶 Delayed

Completed
Planned

16

Selected Bibliography

- Choi, J.H., Lin, J.S., Dai, S., Lei, L. and Seol, Y., 2020. Triaxial compression of hydrate-bearing sediments undergoing hydrate dissociation by depressurization. *Geomechanics for Energy and the Environment*, 23, p.100187.
- Choi, H.H., E. Myshakin, L. Lei, T. Kneafsey, Y. Seol, An experimental system and procedure of unsteady-state relative permeability test for gas hydrate-bearing sediments, *J. Nat.Gas Sci. Eng.*, 82, **2020**, 103545.
 https://doi.org/10.1016/j.jngse.2020.103545
- Kim, J., Zhang, Y., Seol, Y. and Dai, S., 2020. Particle crushing in hydrate-bearing sands. *Geomechanics for Energy and the Environment*, 23, p.100133.
- Kim, J., Seol, Y. and Dai, S., 2021. The coefficient of earth pressure at rest in hydrate-bearing sediments. *Acta Geotechnica*, pp.1-11.
- Lei, L., X. Gai, and Y. Seol (2020), Load-bearing characteristic of methane hydrate within coarse-grained sediments Insights from isotropic consolidation, *Marine and Petroleum Geology*, 121, 104571, https://doi.org/10.1016/j.marpetgeo.2020.104571.
- Lei, L., and Y. Seol (2020), Pore-scale investigation of methane hydrate-bearing sediments under triaxial condition, Geophysical Research Letters, 47(5), e2019GL086448, doi:https://doi.org/10.1029/2019GL086448.
- Pan, L., L. Lei, and Y. Seol (2021), Pore-scale influence of methane hydrate on permeability of porous media, Journal of Natural Gas Science and Engineering, 87, 103758, doi:https://doi.org/10.1016/j.jngse.2020.103758.
- Seol, Y., L. Lei, K. Jarvis, D. Hill, J. H. Choi, T. Park, X. Gai, G. Wunderlich, B. Grey, and C. McArdle (2021), Tools for pressure core sub-coring and pore-scale micro-CT (computed tomography) scans, *Scientific Drilling*, 29, 59-67, doi:10.5194/sd-29-59-2021.
- Singh, H., Seol, Y., Myshakin, E. M., Prediction of gas hydrate saturation using machine learning and optimal set of welllogs, *Computational Geosciences*, **2021**, 25(1), 1-17 https://doi.org/10.1007/s10596-020-10004-3
- Singh, H., Seol, Y., Myshakin, E. M., Automated well-log processing and lithology classification by identifying optimal features through unsupervised and supervised machine learning algorithms, SPE Journal, 2020, 25, 2778-2800, SPE-202477-PA.
- Singh, H., Myshakin, E.M. & Seol, Y. A Novel relative permeability model for gas and water flow in hydrate-bearing sediments with laboratory and field-scale application. *Sci Rep* 10, 2020, 5697. <u>https://doi.org/10.1038/s41598-020-62284-5</u>
- White, M.D., et al., An international code comparison study on coupled thermal, hydrologic and geomechanical processes of natural gas hydrate-bearing sediments. *Marine and Petroleum Geology* 120, **2020**, 104566. https://doi.org/<u>10.1016/j.marpetgeo.2020.104566</u>